ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Fe-Ni-Cr-S system  (1)
  • INORGANIC AND PHYSICAL CHEMISTRY  (1)
  • 2000-2004
  • 1980-1984
  • 1975-1979  (2)
  • 1960-1964
  • 1950-1954
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 13 (1979), S. 25-55 
    ISSN: 1573-4889
    Keywords: thermochemical diagrams ; Fe-Cr-S system ; Fe-Ni-S system ; Ni-Cr-S system ; Fe-Ni-Cr-S system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The stability fields of various sulfide phases that form on Fe-Cr, Fe-Ni, Ni-Cr, and Fe-Cr-Ni alloys have been developed as a function of temperature and the partial pressure of sulfur. The calculated stability fields in the ternary A-B-S system are displayed on plots of log $${\text{p}}_{S_2 } $$ vs. the conjugate extensive variable (nA/nA−nB), which provides a better framework for following the sulfidation of Fe-Cr-Ni alloys at high temperatures. Experimental and estimated thermodynamic data were used in developing the sulfur potential diagrams. Current models and correlations were employed to estimate the unknown thermodynamic behavior of solid solutions of sulfides and to supplement the incomplete phase-diagram data of geophysical literature. These constructed stability field diagrams are in excellent agreement with the sulfide phases and compositions determined experimentally during the sulfidation of SAE 310 stainless steel. The sulfur potential plots appear to be very useful in predicting and correlating the sulfidation of commercial alloys.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-17
    Description: As a part of a program for the development of a sulfur probe for monitoring the sulfur potential in coal gasification reactors, an investigation was conducted regarding the efficiency of the solid electrolyte cell Ar+H2+H2S/CaS+CaF2+(Pt)//CaF2//Pt)+CaF2+CaS/H2S+H2+Ar. A demonstration is provided of the theory, design, and operation of a solid-state sulfur probe based on CaF2 electrolyte. It was found that the cell responds to changes in sulfur potential in a manner predicted by the Nernst equation. The response time of the cell at 1225 K, after a small change in temperature or gas composition, was 2.5 Hr, while at a lower temperature of 990 K the response time was approximately 9 hr. The cell emf was insensitive to a moderate increase in the flow rate of the test gas and/or the reference gas. The exact factors affecting the slow response time of galvanic cells based on a CaF2 electrolyte have not yet been determined. The rate-limiting steps may be either the kinetics of electrode reactions or the rate of transport through the electrolyte.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: Electrochemical Society; vol. 125
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...