ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOPHYSICS  (6)
  • Astrodynamics  (5)
  • *Climate  (4)
  • 2000-2004  (9)
  • 1985-1989  (6)
  • 1940-1944
  • 1
    Publication Date: 2001-07-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alverson, K -- Bradley, R -- Briffa, K -- Cole, J -- Hughes, M -- Larocque, I -- Pedersen, T -- Thompson, L -- Tudhope, S -- New York, N.Y. -- Science. 2001 Jul 6;293(5527):47-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11444288" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbon Dioxide/metabolism ; *Climate ; Cnidaria/physiology ; Conservation of Natural Resources ; Greenhouse Effect ; Humans ; Ice ; Oceans and Seas ; Rain ; Seawater/analysis/chemistry ; Specimen Handling/*methods ; Temperature ; Time Factors ; Trees/growth & development/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bradley, R S -- Briffa, K R -- Crowley, T J -- Hughes, M K -- Jones, P D -- Mann, M E -- New York, N.Y. -- Science. 2001 Jun 15;292(5524):2011-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11411490" target="_blank"〉PubMed〈/a〉
    Keywords: *Climate ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-08-16
    Description: The diversity, frequency, and scale of human impacts on coral reefs are increasing to the extent that reefs are threatened globally. Projected increases in carbon dioxide and temperature over the next 50 years exceed the conditions under which coral reefs have flourished over the past half-million years. However, reefs will change rather than disappear entirely, with some species already showing far greater tolerance to climate change and coral bleaching than others. International integration of management strategies that support reef resilience need to be vigorously implemented, and complemented by strong policy decisions to reduce the rate of global warming.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, T P -- Baird, A H -- Bellwood, D R -- Card, M -- Connolly, S R -- Folke, C -- Grosberg, R -- Hoegh-Guldberg, O -- Jackson, J B C -- Kleypas, J -- Lough, J M -- Marshall, P -- Nystrom, M -- Palumbi, S R -- Pandolfi, J M -- Rosen, B -- Roughgarden, J -- New York, N.Y. -- Science. 2003 Aug 15;301(5635):929-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Coral Reef Biodiversity, James Cook University, Townsville, Qld 4811, Australia. terry.hughes@jcu.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12920289" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Biological ; Animals ; Anthozoa/growth & development/*physiology ; *Climate ; *Conservation of Natural Resources ; *Ecosystem ; Environment ; Fishes ; Greenhouse Effect ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-05-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, Malcolm K -- New York, N.Y. -- Science. 2002 May 3;296(5569):848-9 author reply 848-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11989486" target="_blank"〉PubMed〈/a〉
    Keywords: *Climate ; Temperature ; Time Factors ; Trees/growth & development/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Description: This paper presents a representative example of an enhancement in energetic ion flux associated with the International Sun-Earth Explorer 3 (ISEE 3) spacecraft's encounter with a traveling compression region (TCR). Data from the energetic particle anisotropy spectrometer (EPAS) instrument on ISEE 3 are studied, along with magnetic field data from the vector helium magnetometer. It is concluded that the ion enhancements seen are spatial in nature, thus supporting the idea that TCRs are the lobe signatures of plasmoids moving along the magnetotail, away from earth.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 92; 64-70
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-19
    Description: Magnetotail observations from the ISEE 3 distant (1983) tail mission taken during the Coordinated Data Analysis Workshop 8 (CDAW 8) A and G events are investigated. The ISEE 3 magnetic field, plasma, and energetic particle measurements taken in these two plasmoids have been analyzed and compared with various equilibrium structures and propagating waves/tail oscillation modes. Results indicate general agreement with either the closed-loop (Hones, 1977) or very small pitch angle flux rope (Hughes and Sibeck, 1987; Birn et al., 1989) models of plasmoid structure and poorer agreement with other hypotheses. Calculations based upon typical plasmoid and tail parameters are presented, indicating that the J and B force associated with the disconnected lobe field lines may be sufficient to accelerate plasmoids up to the speeds observed by ISEE 3. Overall, the energy expended in accelerating the plasmoids down the tail appears comparable to that dissipated in the inner magnetosphere and ionosphere. The study produces strong evidence in favor of the plasmoid model of substorm tail dynamics.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 94; 15153-15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: In this work we present a method to solve the impulsive minimum fuel maneuver problem for a distributed set of spacecraft. We develop the method assuming a fully non-linear dynamics model and parameterize the problem to allow the method to be applicable to any flight regime. Furthermore, the approach is not limited by the inter-spacecraft separation distances and is applicable to both small formations as well as constellations. We assume that the desired relative motion is driven by mission requirements and has been determined a-priori. The goal of this work is to develop a technique to achieve the desired relative motion in a minimum fuel manner. To permit applicability to multiple flight regimes, we have chosen to parameterize the cost function in terms of the maneuver times expressed in a useful time system and the maneuver locations expressed in their Cartesian vector representations. We also include as an independent variable the initial reference orbit to solve for the optimal injection orbit to minimize and equalize the fuel expenditure of distributed sets of spacecraft with large inter-spacecraft separations. In this work we derive the derivatives of the cost and constraints with respect to all of the independent variables.
    Keywords: Astrodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: The Magnetospheric Imaging Constellation (MagIC) is a NASA space science concept to study the Earth's Magnetosphere. The concept proposes to apply tomography techniques using an array of spacecraft to obtain three dimensional images of the Earth's magnetosphere. This paper presents an optimal orbit design to ensure that the constellation is in the desired region of the magnetosphere for maximum time. The solution is found using a steepest descent optimization algorithm that takes into account perturbations from the non-spherical Earth, drag, Sun, Moon and other significant bodies. The solution also satisfies constraints on maximum eclipse duration and geometry constraints to allow an adequate GPS navigation solution. We present three solutions depending upon the epoch of the primary science: vernal equinox, summer solstice, and a third midway between the vernal equinox and summer solstice. Orbit insertion is also considered. All spacecraft are assumed to be launched on a single vehicle into a nominal orbit and the (Delta)V's to achieve the nominal orbit are presented. After insertion into the nominal orbit, each spacecraft undergoes a phasing maneuver to place it in the appropriate position with respect to the rest of the constellation. We present a minimum fuel approach to maneuver each spacecraft from the nominal orbit into the desired final orbit.
    Keywords: Astrodynamics
    Type: 16th International Symposium on Space Flight Dynamics; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-17
    Description: Leonardo-BRDF is a NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the orbit dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal two-burn initialization scheme is presented with the required delta-V to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated delta-V's are calculated to maintain the formation in the presence of perturbations.
    Keywords: Astrodynamics
    Type: 2001 Flight Mechanics Symposium; 131; NASA/CP-2001-209986
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-10
    Description: The problem of minimum-fuel formation reconfiguration for the Magnetospheric Multi-Scale (MMS) mission is studied. This reconfiguration trajectory optimization problem can be posed as a nonlinear optimal control problem. In this research, this optimal control problem is solved using a spectral collocation method called the Gauss pseudospectral method. The objective of this research is to provide highly accurate minimum-fuel solutions to the MMS formation reconfiguration problem and to gain insight into the underlying structure of fuel-optimal trajectories.
    Keywords: Astrodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...