ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 1 (1980), S. 59-63 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Previous attempts to determine the strengths of multiple metal-metal bonds are reviewed. Estimates of 73 and 97 kcal/mole for the Mo—Mo bond energies in Mo2Cl84- and Mo2(O2CH)4, respectively, are obtained by combining the known experimental bond energy in Mo2 (96.5 ± 5 kcal/mole) with the results of SCF-Xα-SW calculations on Mo2, Mo2Cl84-, and Mo2(O2CH)4. Possible errors in the estimates are discussed. It is noted that the quadruple bonds in the complexes are predicted stronger per component than the sextuple bond in the diatomic.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 3 (1982), S. 588-592 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An analysis has been made of the applicability of various sets of nonbonded interaction potential parameters which do not consider hydrogen atoms explicitly, to represent molecular packing interactions in crystals of ferrous porphyrin complexes, which are models for deoxyhemoglobin. Ordered regions of the structures are well described, but disordered solvent or ligands cause difficulty.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: CHARMM (Chemistry at HARvard Macromolecular Mechanics) is a highly flexible computer program which uses empirical energy functions to model macromolecular systems. The program can read or model build structures, energy minimize them by first- or second-derivative techniques, perform a normal mode or molecular dynamics simulation, and analyze the structural, equilibrium, and dynamic properties determined in these calculations. The operations that CHARMM can perform are described, and some implementation details are given. A set of parameters for the empirical energy function and a sample run are included.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 9 (1988), S. 327-335 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We present a numerical method for calculating the electrostatic potential of molecules in solution, using the linearized Poisson-Boltzmann equation. The emphasis in this work is on applications to biological macromolecules. The accuracy of the method is assessed by comparisons with analytic solutions for the case of a single charge in a dielectric sphere (Tanford-Kirkwood theory), which serves as a model for a macromolecule. We find that the solutions are generally accurate to within 5%. Larger errors occur close to the charge and the dielectric boundary, but the maximum error found at ion-bonding distance (3 Å) from a charge close to the boundary (1 Å deep) is only ∼15%. Several algorithmic improvements, described here, contribute to the accuracy of the method. The programs involved compose a coherent software package, called Del Phi, which goes from a Brookhaven Protein Data Bank format file to calculated electrostatic fields.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...