ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 12S rRNA  (2)
  • Springer  (2)
  • Nature Publishing Group
  • 2000-2004
  • 1990-1994  (2)
Collection
Publisher
  • Springer  (2)
  • Nature Publishing Group
Years
  • 2000-2004
  • 1990-1994  (2)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 35 (1992), S. 102-113 
    ISSN: 1432-1432
    Keywords: Polymerase chain reaction ; 12S rRNA ; Coelacanth ; Latimeria chalumnae ; Ray-finned fishes ; Lungfishes ; Lepidosiren ; Protopterus ; Neoceratodus ; Conquest of land ; Vertebrate phylogeny
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Since the discovery of the coelacanth, Latimeria chalumnae, more than 50 years ago, paleontologists and comparative morphologists have debated whether coelacanths or lungfishes, two groups of lobe-finned fishes, are the closest living relatives of land vertebrates (Tetrapoda). Previously, Meyer and Wilson (1990) determined partial DNA sequences from two conservative mitochondrial genes and found support for a close relationship of lungfishes to tetrapods. We present additional DNA sequences from the 12S rRNA mitochondria gene for three species of the two lineages of lungfishes that were not represented in the first study: Protopterus annectens and Protopterus aethiopicus from Africa and Neoceratodus forsteri (kindly provided by B. Hedges and L. Maxson) from Australia. This extended data set tends to group the two lepidosirenid lungfish lineages (Lepidosiren and Protopterus) with Neoceratodus as their sister group. All lungfishes seem to be more closely related to tetrapods than the coelacanth is. This result appears to rule out the possibility that the coelacanth lineage gave rise to land vertebrates. The common ancestor of lungfishes and tetrapods might have possessed multiple morphological traits that are shared by lungfishes and tetrapods [Meyer and Wilson (1990) listed 14 such traits]. Those traits that seem to link Latimeria and tetrapods are arguably due to convergent evolution or reversals and not to common descent. In this way, the molecular tree facilitates an evolutionary interpretation of the morphological differences among the living forms. We recommended that the extinct groups of lobe-finned fishes be placed onto the molecular tree that has lungfishes and not the coelacanth more closely related to tetrapods. The placement of fossils would help to further interpret the sequence of morphological events and innovations associated with the origin of tetrapods but appears to be problematic because the quality of fossils is not always high enough, and differences among paleontologists in the interpretation of the fossils have stood in the way of a consensus opinion for the branching order among lobefinned fishes. Marshall and Schultze (1992) criticized the morphological analysis presented by Meyer and Wilson (1990) and suggest that 13 of the 14 morphological traits that support the sister group relationship of lungfishes and tetrapods are not shared derived characters. Here we present further alternative viewpoints to the ones of Marshall and Schultze (1992) from the paleontological literature. We argue that all available information (paleontological, neontological, and molecular data) and rigorous cladistic methodology should be used when relating fossils and extant taxa in a phylogenetic framework.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 31 (1990), S. 359-364 
    ISSN: 1432-1432
    Keywords: Direct sequencing ; Polymerase chain reaction ; Cytochromeb ; 12S rRNA ; Coelacanth ; Ray-finned fishes ; Frog ; Evolutionary tree ; Statistical testing ; Morphological traits ; Conquest of land
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary This paper shows that questions of an unexpected phylogenetic depth can be addressed by the study of mitochondrial DNA (mtDNA) sequences. For decades, it has been unclear whether coelacanth fishes or lungfishes are the closest living relatives of land vertebrates (Tetrapoda). Segments of mtDNA from a lungfish, the coelacanth, and a ray-finned fish were sequenced and compared to the published sequence of a frog mtDNA. A tree based on inferred amino acid replacements, silent transversions, and ribosomal RNA (rRNA) substitutions showed with statistical confidence that the lungfish mtDNA is more closely related to that of the frog than is the mtDNA of the coelacanth. This result appears to rule out the possibility that the coelacanth lineage gave rise to land vertebrates; hence, morphological characters that link the latter two groups are possibly due to convergent evolution or reversals and not to common descent. Besides supporting the theory that land vertebrates arose from an offshoot of the lineage leading to lungfishes, the molecular tree facilitates an evolutionary interpretation of the morphological differences among the living forms. It would appear that the common ancestor of lungfishes and tetrapods already possessed multiple morphological traits preadapting their locomotion, circulation, and respiration for life on land.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...