ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Maps
  • Other Sources  (713)
  • INSTRUMENTATION AND PHOTOGRAPHY  (713)
  • 2000-2004
  • 1990-1994  (285)
  • 1970-1974  (428)
Collection
  • Maps
  • Other Sources  (713)
Years
Year
  • 1
    Publication Date: 2013-08-31
    Description: Mossbauer spectroscopy is a nuclear gamma resonance technique particularly well suited to the study of materials that contain iron (Fe-57). It can provide information on the oxidation state of iron as well as the type and proportion of iron-containing mineral species in a sample of interest. Iron Mossbauer spectroscopy (FeMS) has been applied to samples believed to have come from Mars (SNC meteorites) and has been helpful in refining the choice among putative Martian surface materials by suggesting a likely nanophase component of the Martian regolity. FeMS spectrum of a Martial analogue material (Hawaiian palagonite) is shown; it is dominated by ferric-bearing phases and shows evidence of a nanophase component. FeMS has also been applied to lunar materials. It can be used to measure the maturity of lunar surface material and has been proposed as a prospector for lunar ilmenite, an oxygen resource mineral. Several years ago we suggested a backscatter Mossbauer spectrometer (BaMS) for a Mars rover mission. Backscatter design was selected as most appropriate for in-situ application because no sample preparation is required. Since that time, we have continued to develop the BaMS instrument in anticipation that it would eventually find a home on a NASA planetary mission. Gooding proposed BaMS as a geochemistry instrument on MESUR. More recently, an LPI workshop has recommended that BaMS be included in a three-instrument payload on the next (1996?) lunar lander.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: JPL, Proceedings of the Workshop on Microtechnologies and Applications to Space Systems; p 95-97
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-01-25
    Description: Two intense microwave spectra lines exist in the martian atmosphere that allow unique sounding capabilities: water vapor at 183 GHz and the (2-1) rotational line of CO at 230 GHz. Microwave spectra line sounding is a well-developed technique for the Earth's atmosphere for sounding from above from spacecraft and airplanes, and from below from fixed surface sites. Two simple instruments for temperature sounding on Mars (the CO line) and water vapor measurements are described. The surface sounder proposed for the MESUR sites is designed to study the boundary layer water vapor distribution and the temperature/pressure profiles with vertical resolution of 0.25 km up to 1 km with reduced resolution above approaching a scale height. The water channel will be sensitive to a few tenths of a micrometer of water and the temperature profile will be retrieved to an accuracy between 1 and 2 K. The latter is routinely done on the Earth using oxygen lines near 60 GHz. The measurements are done with a single-channel heterodyne receiver looking into a 10-cm mirror that is canned through a range of elevation angles plus a target load. The frequency of the receiver is sweep across the water and CO lines generating the two spectra at about 1-hr intervals throughout the mission. The mass and power for the proposed instrument are 2 kg and 5-8 W continuously. The measurements are completely immune to the atmospheric dust and ice particle loads. It was felt that these measurements are the ultimate ones to properly study the martian boundary layer from the surface to a few kilometers. Sounding from above requires an orbiting spacecraft with multichannel microwave spectrometers such as the instrument proposed for MO by a subset of the authors, a putative MESUR orbiter, and a proposed Discovery mission called MOES. Such an instrument can be built with less than 10 kg and use less than 15 W. The obvious advantage of this approach is that the entire atmosphere can be sounded for temperature and water vapor in a few hours with somewhat better than a scale height resolution. If a bigger mirror is used (greater than 30 cm) limb sounding geometry can be employed and half scale height resolution achieved to altitudes up to at least 60 km. Again, the measurements are immune to dust and ice loads. Water vapor sensitivity of 0.1 micrometer can be achieved (even with a nadir instrument) and temperature profiles retrieved to an accuracy of better than 2 K from the surface to about 60 km. Winds can be measured from the doppler shifts of CO lines in the limb sounding mode.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Lunar and Planetary Inst., MSATT Workshop on Innovative Instrumentation for the In Situ Study of Atmosphere-Surface Interactions on Mars; p 14-15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-25
    Description: The use of Moessbauer spectroscopy for in situ analysis on the surface of Mars was proposed and the design and implementation of a backscatter Moessbauer spectrometer (BaMS) instrument suitable for planetary missions to the surfaces of Mars (MESUR), the Moon (Artemis and lunar outpost), asteroids, or other solid solar system objects is discussed. The BaMS instrument is designed to be capable of analysis of a sample for the mineralogy of its iron-bearing phases without any sample preparation. A requirement of lander missions to Mars is instrumentation for in situ mineralogical analyses. Such analyses provide data needed for primary characterization as to the type of surface materials present and by inference the processes that formed and subsequently modified them. For purposes of providing diagnostic information about naturally occurring materials, the element iron is particularly important because it is abundant and multivalent (primarily 0, +2, and +3 oxidation states). Knowledge of the oxidation state of iron and its distribution among iron-bearing mineralogies tightly constrains the types of materials present. The pivotal role of iron was already recognized in 1978 by COMPLEX, who recommended development of flight instruments that would identify mineralogy and the oxidation state of iron in planetary surface materials. The near-term U.S. strategy for the exploration of Mars is the MESUR (Mars Environmental SURvey) program, which entails emplacement of a network of small, long-lived surface landers. For the Moon, BaMS was recommended as part of a three-instrument landed payload for the Artemis missions, targeted for 1997. BaMS would prospect for ilmenite, an oxygen resource material, and provide data to assess the maturity of lunar soil. Because instrumental characteristics are low mass, low volume, and low power consumption, BaMS is suitable for implementation on even small landers and rovers, as are being envisioned in MESUR and Artemis concepts. In addition to providing highly diagnostic data, a BaMS analyzer is inherently simple and, as is highly desirable for remote operation, no sample preparation is required.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Lunar and Planetary Inst., MSATT Workshop on Innovative Instrumentation for the In Situ Study of Atmosphere-Surface Interactions on Mars; p 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: The potential for using high-temperature superconductive elements, screen-printed onto ceramic substrates, as thermal bridges to replace the currently employed manganin wires is studied at NASA-LaRC. Substrate selection is considered to be the most critical parameter in device production. Due to the glass-like thermal behavior of yttria-stabilized-zirconia (YSZ) and fused silica substrates, these materials are found to reduce the heat load significantly. The estimated thermal savings for superconductive leads printed onto YSZ or fused silica substrates range from 6 to 14 percent.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Applied Superconductivity (ISSN 0964-1807); 1; 7-9; p. 1363-1372.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: A brief description is presented of an optical flameout detection system under development at NASA Langley's 8-Foot High Temperature Wind Tunnel. The system design, theory of operation, and performance are addressed. The system can respond quickly to sudden changes in combustor light intensity and is a reliable indicator of flame activity within the combustor. Deviations of the system could provide more detailed information on various aspects of the combustion process.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: International Instrumentation Symposium, 39th, Albuquerque, NM, May 2-6, 1993, Proceedings (A93-54351 24-35); p. 371-378.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: The backstreaming contamination in the Space Power Facility, Ohio, was measured using small size clean silicon wafers as contamination sensors placed at all measurement sites. Two ellipsometric models were developed to measure the oil film with the contamination film refractive index of DC 705: a continuous, homogeneous film and islands of oil with the islands varying in coverage fraction and height. The island model improved the ellipsometric analysis quality parameter by up to two orders of magnitude. The continuous film model overestimated the oil volume by about 50 percent.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Journal of Vacuum Science and Technology A (ISSN 0734-2101); 10; 4; p. 2099-2104.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: An upgraded version of AVIRIS, an airborne imaging spectrometer based on a whiskbroom-type scanner coupled via optical fibers to four dispersive spectrometers, that has been in operation since 1987 is described. Emphasis is placed on specific AVIRIS subsystems including foreoptics, fiber optics, and an in-flight reference source; spectrometers and detector dewars; a scan drive mechanism; a signal chain; digital electronics; a tape recorder; calibration systems; and ground support requirements.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: Infrared technology XVII; Proceedings of the Meeting, San Diego, CA, July 22-26, 1991 (A93-38376 15-35); p. 164-175.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-19
    Description: The ability of scanning electron acoustic microscopy (SEAM) to characterize ceramic materials is assessed. SEAM images of Vickers indentations in SiC whisker-reinforced alumina clearly reveal not only the radial cracks, the length of which can be used to estimate the fracture toughness of the material, but also reveal strong contrast, interpreted as arising from the combined effects of lateral cracks and the residual stress field left in the SiC whisker-reinforced alumina by the indenter. The strong contrast is removed after the material is heat treated at 1000 C to relieve the residual stresses around the indentations. A comparison of these observations with SEAM and reflected polarized light observations of Vickers indentations in soda-lime glass both before and after heat treatment confirms the interpretation of the strong contrast.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Applied Physics Letters (ISSN 0003-6951); 57; 1870-187
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-16
    Description: A stage and measuring microscope servocontrolled by a computer have been constructed. The travel of the stage is 0.5 x 0.5 m and the travel of the microscope objective is 7.5 cm. The measuring accuracy is 1 micron in the x-y plane and 5 microns along the z axis. The mechanical and optical construction of the stage and microscope, as well as the way in which the control electronics are organized, permit great flexibility of operation. Possible applications include the scanning and measuring of astronomical plates, the laying out of patterns of semiconductor devices of very large sizes, and the measurement of precision grids.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Review of Scientific Instruments; 42; Nov. 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-16
    Description: StarLifter borne large aperture astronomical telescope for IR and submillimeter observations, discussing design and operation
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: ; IENCES (
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...