ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electron microscopy  (1)
  • PACS. 61.80.Jh Ion radiation effects – 75.60.-d Domain effects, magnetization curves, and hysteresis – 85.70.Ge Ferrite and garnet devices  (1)
  • Springer  (2)
  • 2000-2004  (1)
  • 1990-1994  (1)
  • 1975-1979
  • 1
    ISSN: 1432-2048
    Keywords: Bradyrhizobium ; Electron microscopy ; Glycine (root nodules) ; High-pressure freezing ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract High-pressure freezing of chemically untreated nodules of soybean (Glycine max (L.) Merr.), in sharp contrast to chemical fixation and prefixation, appears to preserve the ultrastructure close to the native state. This is supported by the observation that the peribacteroid membrane of high-pressure-frozen samples is tightly wrapped around the bacteroids, a finding that is fully consistent with the current views on the physiology of oxygen and metabolite transport between plant cytosol and bacteroids. In soybean root nodules, the plant tissue and the enclosed bacteria are so dissimilar that conventional aldehyde-fixation procedures are unable to preserve the overall native ultrastructure. This was demonstrated by high-pressure freezing of nodules that had been pre-fixed in glutaraldehyde at various buffer molalities: no buffer strength tested preserved all ultrastructural aspects that could be seen after high-pressure freezing of chemically untreated nodules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-6036
    Keywords: PACS. 61.80.Jh Ion radiation effects – 75.60.-d Domain effects, magnetization curves, and hysteresis – 85.70.Ge Ferrite and garnet devices
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: The behavior of the magnetic properties of magnetite Fe3O4 irradiated by swift heavy ions is investigated by magnetization measurements. Although there is no induced structural phase transformation, both coercive field and saturation magnetization are sensitive to ion irradiation and exhibit different behaviors depending on the ion fluence range. In the low fluence regime, the coercive field increases, which is evidence for a strong pinning of magnetic domain boundaries by the induced defects. The magnetization shows a decrease in the saturation value and tends to reorient perpendicularly to the ion track axis. At high fluence, the initial magnetic properties of the sample are nearly restored. The changes in the magnitude and the direction of magnetization are interpreted by magnetostrictive effects related to the stress induced by irradiation. A phenomenological model is applied to reproduce the fluence evolution of the saturation magnetization, assuming relaxation of the stress induced around the core of defects of the tracks by overlapping effects at high fluence. The results are compared to those obtained in the case of yttrium iron garnet Y3Fe5O12.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...