ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (18)
  • 1990-1994  (59)
  • 1985-1989  (37)
  • 1980-1984  (26)
  • 1
    Monograph available for loan
    Monograph available for loan
    New York [u.a.] : Gordon and Research Science Publ.
    Associated volumes
    Call number: M 92.0777 ; M 93.0395
    In: Fluid mechanics of astrophysics and geophysics
    Type of Medium: Monograph available for loan
    Pages: VIII, 881 S.
    ISBN: 0677221207
    Series Statement: Fluid mechanics of astrophysics and geophysics
    Classification:
    Geodynamics
    Language: English
    Location: Upper compact magazine
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Associated volumes
    Call number: O 6065
    In: Glacial-isostatic adjustment
    Type of Medium: Monograph available for loan
    Pages: S. 605-646
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Associated volumes
    Call number: O 6066
    In: Glacial-isostatic adjustment
    Type of Medium: Monograph available for loan
    Pages: S. 669-706
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 135-167 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The issue of the physical mechanism(s) that control the efficiency with which the density field in stably stratified fluid is mixed by turbulent processes has remained enigmatic. Similarly enigmatic has been an explanation of the numerical value of ~0.2, which is observed to characterize this efficiency experimentally. We review recent work on the turbulence transition in stratified parallel flows that demonstrates that this value is not only numerically predictable but also that it is expected to be a nonmonotonic function of the Richardson number that characterizes preturbulent stratification strength. This value of the mixing efficiency appears to be characteristic of the late-time behavior of the turbulent flow that develops after an initially laminar shear flow has undergone the transition to turbulence through an intermediate instability of Kelvin-Helmholtz type.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 17 (1985), S. 561-608 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Earth and Planetary Sciences 9 (1981), S. 199-225 
    ISSN: 0084-6597
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 6 (1994), S. 3803-3805 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A theoretical analysis of the stability of a stratified, two-dimensional Kelvin–Helmholtz billow against three-dimensional perturbations is presented. This predicts the three-dimensional spectrum to be dominated by a shear aligned convective instability, which is localized in the region surrounding the billow core. The results of a direct numerical simulation of the evolution of the three-dimensional stratified mixing layer fully verify the dominance of this convective mode in the mixing transition. The origin of the streamwise streaks of vorticity, which precede turbulent collapse in a stratified shear layer, is thereby explained. © 1994 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 6 (1994), S. 1267-1284 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The nonlinear evolution of an unstable symmetric jet in incompressible, density stratified fluid is simulated numerically. When N2 is constant and near zero, like-signed vortices pair by way of an instability of the mean flow to a subharmonic disturbance with wavelength twice that of the most unstable mode of linear theory. For small but finite and constant values of N2, however, the individual vortex cores are strained and vorticity is generated at small scales by the action of baroclinic torques. In this case, the mean flow of the fully evolved jet is stable to subharmonic disturbances. The linear stability of the two-dimensional nonlinear basic states to three-dimensional perturbations is examined in detail. From this stability analysis, it is inferred that jet flow with stratification characterized by constant N2 is a poor candidate for IGW generation. However, the existence of an efficient mechanism whereby IGW may be radiated to infinity from the jet core is demonstrated via simulations initialized with a density profile such that N2=J tanh2(z/R). This mechanism is expected to be an important contributor to the wave field observed in a variety of geophysical circumstances.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 104 (1991), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A formal inverse theory for mantle viscosity based upon the data of glacial isostatic adjustment is here formulated and applied to synthetic data. In this theory full account has been taken of the normal mode nature of the forward problem for realistic viscoelastic (Maxwell) models of the planet. Since it is impossible to accurately infer the excitation and decay constants of the individual normal modes from the observations, the formalism is cast in terms of the observed gross Earth data in the time domain. In this analysis expressions are required for the first-order perturbations in both the modal amplitudes and relaxation times that are induced by an arbitrary radial perturbation to the starting viscosity profile. A numerical technique is developed which enables us to accurately determine differential kernels for the modal amplitudes. the analogous kernels for the modal decay times are derived analytically (Peltier 1976), and the complete set of kernels is shown to satisfy the physical constraint imposed by the uniqueness of the state of isostatic equilibrium for the viscously incompressible Maxwell models that we employ. When the problem is parametrized in terms of the logarithm of viscosity, the kernels are capable of accurately predicting shifts in the normal mode characteristics for at least an order of magnitude variation in mantle viscosity.Using Bayesian statistics a formal inversion is applied to a set of synthetically generated data. These data, chosen to reproduce the space-time coverage of the actual observables, include a subset related to the global gravity field and a large sequence of idealized relative sea level (RSL) curves. It is found that even very weak a priori constraints can provide a stable and accurate inversion. A resolving power analysis indicates a spatial resolution of approximately 1200km near the core-mantle boundary (CMB) with a gradual improvement to better than 350km in the middle of the upper mantle. Subsets of the synthetic data are inverted in order to examine conditions on stability and accuracy, and to determine their relative contributions to the spatial resolution. Data from progressively older beaches are shown to contribute most to the spatial resolution at all depths, though the improvement in lower mantle resolution converges for data obtained from beaches formed within the last 5000 yr. Furthermore, the RSL curves in the vicinity of the peripheral bulge of the ancient Laurentide ice sheet are significant contributors to lower mantle resolution (as demonstrated in previous analyses of the forward problem). the inversion of this subset of the data also appears to be encouragingly stable.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 108 (1992), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The majority of investigations of the glacial isostatic adjustment problem have proceeded by invoking the correspondence principle and solving for the (Laplace) transformed impulse response of the viscoelastic Earth model that is represented in terms of Love number spectra (Peltier 1974). This formulation requires a final inversion of the solution into the time domain, and the present paper is concerned with a comparison and assessment of the three techniques (pure collocation, full normal mode analysis using residue theory, and a hybrid technique which we term mixed collocation) that have been developed to perform it. On the basis of the analysis presented here we conclude that both the full normal mode analysis and mixed collocation can generate accurate inversions of the Love number spectra. We also derive clear guidelines on the choice of collocation points that ensure that the same accuracy is achieved using pure collocation. As a final point we stress anew that, regardless of the technique employed, the accuracy of the inversions can and should be checked by comparing the predicted infinite time-scale response for a Heaviside loading history with an independent calculation of the response for an inviscid Earth with a lithosphere of appropriate thickness.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...