ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (3)
  • 1995-1999  (3)
Collection
Years
Year
  • 1
    Publication Date: 2004-06-25
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-07-23
    Description: An approach is presented that uses velocimetry data to estimate accurately the spatial distribution of viscosity in steady laminar parallel flows of incompressible linearly viscous fluids. The approach is generally applicable to Newtonian fluids with spatially varying viscosity or to particle-suspension flows where a non-uniform distribution of the particles contributes to spatial variations in the local effective viscosity of the suspension. Emphasis is placed on the application of these methods to steady axisymmetric blood flow in cylindrical glass capillary tubes and microvessels. In this context, the spatial variations in viscosity over the vessel cross-section are predicted where it is assumed that the rheological properties associated with a heterogeneous red blood cell suspension can be well approximated by a continuous generalized linearly viscous fluid having a spatially non-uniform viscosity. For such a fluid, an expression for the viscosity profile over the vessel cross-section is derived that satisfies the conservation principles of mass and momentum and depends upon the a priori determined velocity distribution, which is extracted from fluorescent micro-particle image velocimetry data obtained from microvessels in vivo. These profiles provide useful information about dynamic, kinematic and rheological properties of the flow that include expressions for the axial pressure-gradient component, the local shear stress distribution, and the relative apparent viscosity. In microvessels, the effect of the glycocalyx surface layer on the vessel wall is also accounted for in the analysis by modelling the layer as a uniformly thick porous medium. Velocimetry data are presented from in vivo measurements made in venules after the application of a light-dye treatment to degrade the glycocalyx. Results reveal that these methods are sufficiently sensitive to detect a reduction in glycocalyx thickness of ∼0.3 μm, which represents a fractional decrease in thickness of ∼60-70% when compared with results from a separately published data set obtained from venules having an intact glycocalyx. © 2004 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-05-10
    Description: A closed-form analytic solution for the motion of axisymmetric rigid pellets suspended in a Newtonian fluid and driven under a pressure gradient through a rigid impermeable cylindrical tube lined with a porous deformable biphasic wall layer is derived using mixture and lubrication theories. The analysis details the velocity distributions in the lubrication and wall layers as well as the solid-phase displacement field in the wall layer. Expressions for the shear stress and pressure gradient are obtained throughout the lubrication and wall layers. Results are presented in terms of resistance, volume flow, and driving pressure relative to smooth-walled tubes for cases both with and without rigid spheres flowing in the free lumen. The analysis is motivated by its possible relevance to the rheology of blood in the microcirculation wherein the endothelial-cell glycocalyx - a carbohydrate-rich coat of macromolecules consisting of proteoglycans and glycoproteins expressed on the Iuminal surface of the capillary wall - might exhibit similar behaviour to the wall layer modelled here. Estimates of the permeability of the glycocalyx are taken from experimental data for fibrinogen gels formed in vitro. In a tube without pellets lined with a porous wall layer having a thickness which is 15% of the tube radius and having a permeability in the range of fibrinogen gels, approximately a 70% greater pressure drop is required to achieve the same volume flow as would occur in an equivalent smooth-walled tube without a wall layer. If, in the presence of this same wall layer, a rigid spherical pellet is introduced which is 99.5% of the free-lumen radius, the apparent viscosity increases by as much as a factor of four with a concomitant reduction in tube hematocrit of about 10% relative to the corresponding values in an equivalent smooth-walled tube having the same sphere-to-tube diameter ratio without a wall layer.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-01-25
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-01-25
    Description: A matched asymptotic analysis is presented that describes the mechanical response of the vestibular semicircular canals to rotation of the head and includes the fluid-structure interaction which takes place within the enlarged ampullary region of the duct. New theoretical results detail the velocity field in a fluid boundary layer surrounding the cupula. The governing equations were linearized for small perturbations in fluid displacement from the prescribed motion of the head and reduced asymptotically by exploiting the slender geometry of the duct. The results include the pressure drop around the three-dimensional endolymphatic duct and through the transitional boundary layers within the ampulla. Results implicitly include the deflected shape of the cupular partition and provide an expression for the dynamic boundary condition acting on the two surfaces of the cupula. In this sense, the analysis reduces the three-dimensional fluid dynamics of the endolymph to a relatively simple boundary condition acting on the surfaces of the cupula. For illustrative purposes we present specific results modelling the cupula as a simple viscoelastic membrane. New results show that the multi-dimensional fluid dynamics within the enlarged ampulla has a significant influence on the pointwise deflection of the cupula near the crista. The spatially averaged displacement of the cupula is shown to agree with previous macromechanical descriptions of endolymph flow and pressure that ignore the fluid-structure interaction at the cupula. As an example, the model is applied to the geometry of the horizontal semicircular canal of the toadfish, Opsanus tau, and results for the deflection of the cupula are compared to individual semicircular canal afferent responses previously reported by Boyle & Highstein (1990). The cupular-shear-angle gain, defined by the angular slope of the cupula at the crista divided by the angular velocity of the head, is relatively constant at frequencies from 0.01 Hz up to 1 Hz. Over this same range, the phase of the cupular shear angle aligns with the angular velocity of the head. Near 10 Hz, the shear-angle gain increases slightly and the phase shows a lead of as much a 30°. Results are sensitive to the cupular stiffness and viscosity. Comparing results to the afferent responses represented within the VIIIth nerve provides additional theoretical evidence that the macromechanical displacement of the cupula accounts for the behaviour of only a subset of afferent fibres.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-01-10
    Description: A three-dimensional analysis is presented of the Stokes flow, adjacent to a Brinkman half-space, that is induced or altered by the presence of a sphere in the flow field that (a) translates uniformly without rotating, (b) rotates uniformly without translating, or (c) is fixed in a shear flow that is uniform in the far field. The linear superposition of these three flow regimes is also considered for the special case of the free motion of a neutrally buoyant sphere. Exact solutions to the momentum equations are obtained in terms of infinite series expansions in the Stokes-flow region and in terms of integral transforms in the Brinkman medium. Attention is focused on the approach to the asymptotic limit as the ratio of Newtonian- to Darcy-drag forces vanishes. From the leading-order asymptotic approximations, implicit recursion relations are derived to determine the coefficients in the series solutions such that those solutions exactly satisfy the boundary and interfacial conditions as well as the continuity equations in both the Stokes-flow and Brinkman regions. For each of the three flow regimes considered, results are presented in terms of the drag force on the sphere and torque about the sphere centre as a function of the dimensionless separation distance between the sphere and the interfacial plane for several small values of the dimensionless hydraulic permeability of the Brinkman medium. Finally, the free motion of a neutrally buoyant sphere is found by requiring that the net hydrodynamic drag force and torque acting on the sphere vanish. Results for this case are presented in terms of the dimensionless translational and rotational speeds of the sphere as a function of the dimensionless separation distance for several small values of the dimensionless hydraulic permeability. The work is motivated by its potential application as an analytical tool in the study of near-wall microfluidics in the vicinity of the glycocalyx surface layer on vascular endothelium and in microelectromechanical systems devices where charged macromolecules may become adsorbed to microchannel walls. © 2004 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...