ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (22)
  • Earth Resources and Remote Sensing; Meteorology and Climatology
  • Mathematical and Computer Sciences (General)
  • 2000-2004  (6)
  • 1995-1999  (16)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2004-12-03
    Description: The Lightning Imaging Sensor (LIS) is a NASA Earth Observing System (EOS) instrument on the Tropical Rainfall Measuring Mission (TRMM) platform designed to acquire and investigate the distribution and variability of total lightning (i.e., cloud-to-ground and intracloud) between q35' in latitude. Since lightning is one of the responses of the atmosphere to thermodynamic and dynamic forcing, the LIS data is being used to detect deep convection without land-ocean bias, estimate the precipitation mass in the mixed phased region of thunderclouds, and differentiate storms with strong updrafts from those with weak vertical motion.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 746-749; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: The Optical Transient Detector (OTD) is a space-based instrument specifically designed to detect and locate lightning discharges (intracloud and cloud-to-ground) as it orbits the Earth. A statistical examination of OTD lightning data reveals that nearly 1.2 billion flashes occurred over the entire earth during the one year period from September 1995 through August 1996. This translates to an average of 37 lightning flashes occurring around the globe every second, which is well below the traditional estimate of 100 flashes per second. An average of 75% of the global lightning activity during the year occurs between 30' S and 30' N. An analysis of the annual lightning distribution reveals that an average of 82% of the lightning flashes occur over the continents and 18% over the oceans, which translates to an average land-ocean flash density ratio of nearly 11.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 726-729; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: The mapping of the lightning optical pulses detected by the Lightning Imaging Sensor (LIS) is compared with the radiation sources by Lightning Detection and Ranging (LDAR) and the National Lightning Detection Network (NLDN) for three thunderstorms observed during and overpasses on 15 August 1998. The comparison involves 122 flashes including 42 ground and 80 cloud flashes. For ground flash, the LIS recorded the subsequent strokes and changes inside the cloud. For cloud flashes, LIS recorded those with higher sources in altitude and larger number of sources. The discrepancies between the LIS and LDAR flash locations are about 4.3 km for cloud flashes and 12.2 km for ground flashes. The reason for these differences remain a mystery.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 738-741; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: Since April 1995, lightning activity around the globe has been monitored with the Optical Transient Detector (OTD). The OTD observations acquired during the one year period from September 1995 through August 1996 have been used to statistically determine the number of flashes that occur over the Earth during each hour of the diurnal cycle, expressed both as a function of local time and universal time. The globally averaged local [il,htnina activity displays a peak in late afternoon (1500-1800 local time) and a minimum in the morning hours (0600- 1000 local time) consistent with convection associated with diurnal heating. No diurnal variation is found for oceanic storms. The diurnal lightning distribution (universal time) for the globe displays a variation of about 35% about its mean as compared to the Carnegie curve which has a variation of only 15% above and below the mean.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 742-745; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from an Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing and arrival time of lightning radio emissions. Solutions for the plane (i.e., no Earth curvature) are provided that implement all of tile measurements mentioned above. Tests of the retrieval method are provided using computer-simulated data sets. We also introduce a quadratic planar solution that is useful when only three arrival time measurements are available. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in source location. Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. In the absence of measurement errors, quadratic root degeneracy (no source location ambiguity) is shown to exist exactly on the outer sensor baselines for arbitrary non-collinear network geometries. The accuracy of the quadratic planar method is tested with computer generated data sets. The results are generally better than those obtained from the three station linear planar method when bearing errors are about 2 deg. We also note some of the advantages and disadvantages of these methods over the nonlinear method of chi(sup 2) minimization employed by the National Lightning Detection Network (NLDN) and discussed in Cummins et al.(1993, 1995, 1998).
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: Each year, thousands of lightning electric field disturbances are recorded and archived by the ground-based field mill (FM) network at the NASA Kennedy Space Center (KSC) and USAF Eastern Range (ER). The FM network has a range of several tens of kilometers, and a digital accuracy of 4 V/m. It has provided years of continuous lightning warning surveillance to KSC-ER space vehicle launch operations, and has undergone one major hardware upgrade since its inception in the early 1970s. Additional KSC lightning warning data is derived from a multistation radio time-of-arrival system called Lightning Detection and Ranging (LDAR). This system provides the location and space-time mapping of individual lightning channels (for both cloud and ground flashes). Additional lightning information for the KSC region is available from the National Lightning Detection Network (NLDN) and a 5-station local magnetic direction finder network. In this study, all of the above mentioned data are used to ground-validate data derived from the Lightning Imaging Sensor (LIS) onboard the Tropical Rainfall Measuring Mission (TRMM). The FM network can be used to retrieve the charges deposited in a lightning flash, provided the flash is within a few kilometers of the FM Network. Although it is rare to obtain a TRMM overpass of thunderstorms hat occur this close to the FM network, seven such storms have been found and examined in this study. We compare the times and locations of LIS optical pulses with the spatial-temporal character of the FM, LDAR, and magnetic direction finder data. We also inter-compare LIS optical pulse amplitude data with FM-derived charge magnitudes, number of LDAR radio sources, and peak current values from magnetic direction finder data. Generally speaking, LIS lightning locations and times agree favorably with the KSC ground-based systems for most cases, but little correlation appears to exist between optical pulse amplitude and any of charge, # LDAR sources, peak current), owing possibly to the effects of source complexity and/or cloud multiple scattering.
    Keywords: Meteorology and Climatology
    Type: 2000 Fall Meeting; Dec 15, 2000 - Dec 19, 2000; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: A new multi-station VHF time-of-arrival (TOA) antenna network is, at the time of this writing, coming on-line in Northern Alabama. The network, called the Lightning Mapping Array (LMA), employs GPS timing and detects VHF radiation from discrete segments (effectively point emitters) that comprise the channel of lightning strokes within cloud and ground flashes. The network will support on-going ground validation activities of the low Earth orbiting Lightning Imaging Sensor (LIS) satellite developed at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. It will also provide for many interesting and detailed studies of the distribution and evolution of thunderstorms and lightning in the Tennessee Valley, and will offer many interesting comparisons with other meteorological/geophysical wets associated with lightning and thunderstorms. In order to take full advantage of these benefits, it is essential that the LMA channel mapping accuracy (in both space and time) be fully characterized and optimized. In this study, a new revised channel mapping retrieval algorithm is introduced. The algorithm is an extension of earlier work provided in Koshak and Solakiewicz (1996) in the analysis of the NASA Kennedy Space Center (KSC) Lightning Detection and Ranging (LDAR) system. As in the 1996 study, direct algebraic solutions are obtained by inverting a simple linear system of equations, thereby making computer searches through a multi-dimensional parameter domain of a Chi-Squared function unnecessary. However, the new algorithm is developed completely in spherical Earth-centered coordinates (longitude, latitude, altitude), rather than in the (x, y, z) cartesian coordinates employed in the 1996 study. Hence, no mathematical transformations from (x, y, z) into spherical coordinates are required (such transformations involve more numerical error propagation, more computer program coding, and slightly more CPU computing time). The new algorithm also has a more realistic definition of source altitude that accounts for Earth oblateness (this can become important for sources that are hundreds of kilometers away from the network). In addition, the new algorithm is being applied to analyze computer simulated LMA datasets in order to obtain detailed location/time retrieval error maps for sources in and around the LMA network. These maps will provide a more comprehensive analysis of retrieval errors for LMA than the 1996 study did of LDAR retrieval errors. Finally, we note that the new algorithm can be applied to LDAR, and essentially any other multi-station TWA network that depends on direct line-of-site antenna excitation.
    Keywords: Meteorology and Climatology
    Type: Spring AGU Meeting; May 28, 2002 - May 31, 2002; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: The Optical Transient Detector (OTD) is a space-based instrument specifically designed to detect and locate lightning discharges as it orbits the Earth. This instrument is a scientific payload on the MicroLab-1 satellite that was launched into a low-earth, 70 deg. inclination orbit in April 1995. Given the orbital trajectory of the satellite, most regions of the earth are observed by the OTD instrument more than 400 times during a one year period, and the average duration of each observation is 2 minutes. The OTD instrument optically detects lightning flashes that occur within its 1300x1300 sq km field-of-view during both day and night conditions. A statistical examination of OTD lightning data reveals that nearly 1.4 billion flashes occur annually over the entire earth. This annual flash count translates to an average of 44 +/- 5 lightning flashes (intracloud and cloud-to-ground combined) occurring around the globe every second, which is well below the traditional estimate of 100 flashes per second that was derived in 1925 from world thunder-day records. The range of uncertainty for the OTD global totals represents primarily the uncertainty (and variability) in the flash detection efficiency of the instrument. The OTD measurements have been used to construct lightning climatology maps that demonstrate the geographical and seasonal distribution of lightning activity for the globe. An analysis of this annual lightning distribution confirms that lightning occurs mainly over land areas, with an average land:ocean ratio of 10:1. A dominant Northern Hemisphere summer peak occurs in the annual cycle, and evidence is found for a tropically-driven semiannual cycle.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-18
    Description: Laboratory calibration and observed background radiance data are used to determine the effective sensitivities of the Optical Transient Detector and Lightning Imaging Sensor, as functions of local hour and pixel location within the instrument arrays. The effective LIS thresholds, expressed as radiances emitted normal to cloud top, are 4.0 plus or minus 0.7 and 7.6 plus or minus 3.3 micro J/ster/m (sup 2) for night and local noon; the OTD thresholds am 11.7 plus or minus 2.2 and 16.8 plus or minus 4.6 microJ/ster/m (sup 2). LIS and OTD minimum signal to noise ratios occur from 0800 to 1600 local time, and attain values of 10 plus or minus 2 and 20 plus or minus 3, respectively. False alarm rate due to instrument noise yields approximately 5 false triggers per month for LIS, and is negligible for OTD. Flash detection efficiency, based on prior optical pulse sensor measurements, is predicted to be 93 plus or minus 4% and 73 plus or minus 11% for LIS night and noon; 56 plus or minus 7% and 44 plus or minus 9% for OTD night and noon, corresponding to a 12 - 20% diurnal variability and LIS:OTD ratio of 1.7. Use of the weighted daily mean detection efficiency (i.e., not controlling for local hour) corresponds to a sigma = 8 - 9% uncertainty. These are likely overestimates of actual flash detection efficiency due to differences in pixel ground field-of-view across the instrument arrays, which are not accounted for in the validation optical pulse sensor data.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: The Optical Transient Detector (OTD) is a space-based instrument specifically designed to detect and locate lightning discharges (intracloud and cloud-to-ground) as it orbits the Earth. A statistical examination of OTD lightning data reveals that nearly 1.2 billion flashes occurred over the entire earth during the one year period from September 1995 through August 1996. This translates to an average of 37 lightning flashes occurring around the globe every second, which is well below the traditional estimate of 100 flashes per second. An average of 75% of the global lightning activity during the year occurs between 30 deg S and 30 deg N. An analysis of the annual lightning distribution reveals that an average of 82% of the lightning flashes occur over the continents and 18% over the oceans, which translates to an average land-ocean flash density ratio of nearly 11.
    Keywords: Meteorology and Climatology
    Type: Atmospheric Electricity; Jun 07, 1999 - Jun 11, 1999; Guntersville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...