ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In Saccharomyces cerevisiae, a network of signal transduction pathways governs the switch from yeast-type growth to pseudohyphal and invasive growth that occurs in response to nutrient limitation. Important elements of this network have been identified, including nutrient signal receptors, GTP-binding proteins, components of the pheromone-dependent MAP kinase cascade and several transcription factors. However, the structural and functional mapping of these pathways is far from complete. Here, we present data regarding three genes, MSN1/MSS10, MSS11 and MUC1/FLO11which form an essential part of the signal transduction network establishing invasive growth. Both MSN1 and MSS11 are involved in the co-regulation of starch degradation and invasive growth. Msn1p and Mss11p act downstream of Mep2p and Ras2p and regulate the transcription of both STA2 and MUC1. We show that MUC1 mediates the effect of Msn1p and Mss11p on invasive growth. In addition, our results suggest that the activity of Msn1p is independent of the invasive growth MAP kinase cascade, but that Mss11p is required for the activation of pseudohyphal and invasive growth by Ste12p. We also show that starch metabolism in S. cerevisiae is subject to regulation by components of the MAP kinase cascade.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In Saccharomyces cerevisiae, the cell surface protein, Muc1p, was shown to be critical for invasive growth and pseudohyphal differentiation. The transcription of MUC1 and of the co-regulated STA2 glucoamylase gene is controlled by the interplay of a multitude of regulators, including Ste12p, Tec1p, Flo8p, Msn1p and Mss11p. Genetic analysis suggests that Mss11p plays an essential role in this regulatory process and that it functions at the convergence of at least two signalling cascades, the filamentous growth MAPK cascade and the cAMP-PKA pathway. Despite this central role in the control of filamentous growth and starch metabolism, the exact molecular function of Mss11p is unknown. We subjected Mss11p to a detailed molecular analysis and report here on its role in transcriptional regulation, as well as on the identification of specific domains required to confer transcriptional activation in response to nutritional signals. We show that Mss11p contains two independent transactivation domains, one of which is a highly conserved sequence that is found in several proteins with unidentified function in mammalian and invertebrate organisms. We also identify conserved amino acids that are required for the activation function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...