ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Additions of small amounts of Hf and Si to NiAl single crystals significantly improve their high-temperature strength and creep properties. However, if large Hf-rich dendritic particles formed during casting of the alloyed single crystals are not dissolved completely during homogenization heat treatment, a large variation in creep rupture life can occur. This behavior, observed in five samples of a Hf containing NiAl single crystal alloy tested at 1144 K under an initial stress of 241.4 MPa, is described in detail highlighting the role of interdendritic Hf-rich particles in limiting creep rupture life.
    Keywords: Metallic Materials
    Type: NASA-TM-112890 , NAS 1.15:112890 , Micromechanics of Advanced Materials; Jan 01, 1995; United States|Proceedings of the Micromechanics of Advanced Materials Symposium; 255-263
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Four-point bend, constant load compressive creep and constant engineering strain rate tests were conducted on arc-melted and powder-metallurgy (PM) processed Cr40Mo30Si30 specimens in the temperature range 1400 and 1700 K. This is a two phase alloy consisting of (CrMo)3Si and (Cr,Mo)5Si3 phases. The PM specimens, which were substantially weaker than the arc-melted materials, exhibited a stress exponent n, of about 2 and an apparent activation energy for creep, Q(sub 3), of 485 kJ/mol. The mechanism in these specimens appeared to be controlled by creep of a glassy phase. In the case of arc-melted specimens for which nis approximately 3 and Q(sub 3) is approximately 430 kJ/mol, the rate-controlling creep mechanism appeared to be that dominant in the (Cr,Mo)5Si3 phase. In this case, it is suggested that the Nabarro creep mechanism, where dislocation climb is controlled by Bardeen-Herring vacancy sources, is the dominant creep mechanism. Finally, an analysis of the present and literature data on Cr3Si alloyed with Mo appeared to suggest that the creep rate decreases sharply with an increase in the Mo/Si ratio.
    Keywords: Metallic Materials
    Type: Feb 14, 1998; San Antonio, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: An investigation was undertaken to study the phase relations in Cr3Si alloyed with Mo varying from 10 to 83.5 wt. % of the material. Specimens were prepared from arc-melted buttons that were subsequently heat treated at 1673 K for 200 h and air quenched to room temperature to structures. Alloys containing more than 20 wt. % MO were primarily two-phase materials of M3Si and M5Si3, where M is (Cr,Mo). Three alloys contained less than 5% of a third phase, which also had the M5Si3 crystal structure. Differential thermal analysis (DTA) was performed on several specimens at temperatures up to 2073 K in order to determine a solidus curve for the M3Si phase. Since only one DTA peak was observed in each alloy, the M5Si3 phase must melt above 2073 K, the maximum temperature examined. A preliminary pseudo-binary phase diagram for (Cr,Mo)3Si and a portion of the 1673 K isothermal section of the Cr-Mo-Si ternary phase diagram are presented.
    Keywords: Metallic Materials
    Type: NASA-TM-111948 , NAS 1.15:111948 , Mat. Res. Soc. Symp. Proc.; 364; 949-954
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: Ground-based heat treatment tests are planned on an argon gas-filled tantalum cartridge developed as pan of a Diffusion Processes in Molten Semiconductors (DPIMS) experiment conducted on NASA's Space Shuttle. The possibility that the cartridge may creep during testing and touch the furnace walls is of real concern in this program. The present paper discusses the results of calculations performed to evaluate this possibility. Deformation mechanism maps were constructed using literature data in order to identify the creep mechanism dominant under the appropriate stresses and temperatures corresponding to the test conditions. These results showed that power-law creep was dominant when the grain size of the material exceeded 55 gm but Coble creep was the important mechanism below this value of grain size. Finite element analysis was used to analyze the heat treatment tWs assuming a furnace run away condition (which is a worst case scenario) using the appropriate creep parameters corresponding to grain sizes of 1 and 100 gm. Calculations were also conducted to simulate the effect of an initial 3 tilt of the cartridge assembly, the maximum possible tilt angle. The von Mises stress and su-ain distributions were calculated assuming that the cartridge was fixed at one end as it was heated from ambient temperature to 1823 K in 1.42 h, maintained at 1823 K for 9.5 h and then further heated to an over temperature condition of 2028 K in 0.3 h. The inelastic axial and radial displacements of the cartridge walls were evaluated by resolving the von Mises strain along the corresponding directions. These calculations reveal that the maximum axial and radial displacements are expected to be about 2.9 and 0.25 mm, respectively, for both fine and coarse-grained materials at 2028 K. It was determined that these displacements occur during heat-up to temperature and creep of the cartridge is likely to be relatively insignificant irrespective of grain size. Furthermore, with a 3' tilt of the cartridge, the deflection is increased by only 0.39 gm which is negligible. Since the gap between the furnace heating elements and the cartridge is about 7.5 mm and less than the maximum radial dilation of 0.25 mm at 2028 K, it is concluded that the cartridge is unlikely to touch the furnace walls during the experiments.
    Keywords: Metallic Materials
    Type: NASA/TM-1998-207424 , E-11153 , NAS 1.15:207424
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...