ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Spacecraft Design, Testing and Performance  (13)
  • Aerospace Medicine  (7)
  • 2000-2004  (11)
  • 1995-1999  (9)
  • 1960-1964
  • 1
    Publication Date: 2011-08-24
    Description: Serum-deprived mouse osteoblastic cells (MC3T3-E1a) were centrifuged under a regime designed to simulate a space shuttle launch (maximum of 3g). Messenger RNA levels for eight genes involved in bone growth and maintenance were determined using RT-PCR. Following 30 min of centrifugation, mRNA level for early response gene c-fos was significantly increased 89% (P 〈 0.05). The c-fos induction was transient and returned to control levels after 3 h. The mRNA level for the mineralization marker gene osteocalcin was significantly decreased to 44% of control level (P 〈 0.005) 3 h after centrifugation. No changes in mRNA levels were detected for c-myc, TGFbeta1, TGFbeta2, cyclophilin A, or actin. No basal mRNA level for TGFbeta3 was detected. In addition, no change in the steady-state synthesis of prostaglandin E2 was detected, possibly due to lack of lipid substrates in serum-deprived cells, suggesting that the increase in c-fos mRNA in response to gravitational loading is a result of mechanical stimulation. These results indicate that a small magnitude mechanical loading, such as that experienced during a shuttle launch, can alter mRNA levels in quiescent osteoblastic cells.
    Keywords: Aerospace Medicine
    Type: Experimental cell research (ISSN 0014-4827); Volume 228; 1; 168-71
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Although our understanding of effects of space flight on human physiology has advanced significantly over the past four decades, the potential contribution of stress at the cellular and gene regulation level is not characterized. The objective of this ground-based study was to evaluate stress gene regulation in cells exposed to altered gravity and environmentally suboptimal conditions. We designed primers to detect message for both the constitutive and inducible forms of the heat shock protein, HSP-70. Applying the reverse transcriptase-polymerase chain reaction (RT-PCR), we probed for HSP-70 message in human acute T-cell leukemia cells, Jurkat, subjected to three types of environmental stressors: (1) altered gravity achieved by centrifugation (hypergravity) and randomization of the gravity vector in rotating bioreactors, (2) serum starvation by culture in medium containing 0.05% serum, and (3) temperature elevation (42 degrees C). Temperature elevation, as the positive control, significantly increased HSP-70 message, while centrifugation and culture in rotating bioreactors did not upregulate heat shock gene expression. We found a fourfold increase in heat shock message in serum-starved cells. Message for the housekeeping genes, actin and cyclophilin, were constant and comparable to unstressed controls for all treatments. We conclude that gravitational perturbations incurred by centrifugal forces, exceeding those characteristic of a Space Shuttle launch (3g), and culture in rotating bioreactors do not upregulate HSP-70 gene expression. In addition, we found RT-PCR useful for evaluating stress in cultured cells. Copyright 2000 Wiley-Liss, Inc.
    Keywords: Aerospace Medicine
    Type: Journal of cellular biochemistry (ISSN 0730-2312); Volume 77; 1; 127-34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-07
    Description: Maintaining contamination certification of multi-mission flight hardware is an innovative approach to controlling mission costs. Methods for assessing ground induced degradation between missions have been employed by the Hubble Space Telescope (HST) Project for the multi-mission (servicing) hardware. By maintaining the cleanliness of the hardware between missions, and by controlling the materials added to the hardware during modification and refurbishment both project funding for contamination recertification and schedule have been significantly reduced. These methods will be discussed and HST hardware data will be presented.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 20th Space Simulation Conference: The Changing Testing Paradigm; 1-13; NASA/CP-1999-208598
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-05
    Description: The Earth Observing System (EOS) AM-1 spacecraft for NASA's Mission to Planet Earth is scheduled to be launched on an Atlas IIAS vehicle in June of 1998. One concern is that the instruments on the EOS spacecraft are sensitive to the shock-induced vibration produced when the spacecraft separates from the launch vehicle. By employing unique statistical analysis to the available ground test shock data, the NASA Lewis Research Center found that shock-induced vibrations would not be as great as the previously specified levels of Lockheed Martin. The EOS pyroshock separation testing, which was completed in 1997, produced a large quantity of accelerometer data to characterize the shock response levels at the launch vehicle/spacecraft interface. Thirteen pyroshock separation firings of the EOS and payload adapter configuration yielded 78 total measurements at the interface. The multiple firings were necessary to qualify the newly developed Lockheed Martin six-hardpoint separation system. Because of the unusually large amount of data acquired, Lewis developed a statistical methodology to predict the maximum expected shock levels at the interface between the EOS spacecraft and the launch vehicle. Then, this methodology, which is based on six shear plate accelerometer measurements per test firing at the spacecraft/launch vehicle interface, was used to determine the shock endurance specification for EOS. Each pyroshock separation test of the EOS spacecraft simulator produced its own set of interface accelerometer data. Probability distributions, histograms, the median, and higher order moments (skew and kurtosis) were analyzed. The data were found to be lognormally distributed, which is consistent with NASA pyroshock standards. Each set of lognormally transformed test data produced was analyzed to determine if the data should be combined statistically. Statistical testing of the data's standard deviations and means (F and t testing, respectively) determined if data sets were significantly different at a 95-percent confidence level. If two data sets were found to be significantly different, these families of data were not combined for statistical purposes. This methodology produced three separate statistical data families of shear plate data. For each population, a P99.1/50 (probability/confidence) per-separation-nut firing level was calculated. By using the binomial distribution, Lewis researchers determined that this pernut firing level was equivalent to a P95/50 per-flight confidence level. The overall envelope of the per-flight P95/50 levels led to Lewis' recommended EOS interface shock endurance specification. A similar methodology was used to develop Lewis' recommended EOS mission assurance levels. The available test data for the EOS mission are significantly larger than for a normal mission, thus increasing the confidence level in the calculated expected shock environment. Lewis significantly affected the EOS mission by properly employing statistical analysis to the data. This analysis prevented a costly requalification of the spacecraft's instruments, which otherwise would have been exposed to significantly higher test levels.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Research and Technology 1997; NASA/TM-1998-206312
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-05-27
    Description: Sleep disruption and associated waking sleepiness and fatigue are common during space flight. A survey of 58 crew members from nine space shuttle missions revealed that most suffered from sleep disruption, and reportedly slept an average of only 6.1 hours per day of flight as compared to an average of 7.9 hours per day on the ground. Nineteen percent of crewmembers on single shift missions and 50 percent of the crewmembers in dual shift operations reported sleeping pill usage (benzodiazepines) during their missions. Benzodiazepines are effective as hypnotics, however, not without adverse side effects including carryover sedation and performance impairment, anterograde amnesia, and alterations in sleep EEG. Our preliminary ground-based data suggest that pre-sleep administration of 0.3 mg of the pineal hormone melatonin may have the acute hypnotic properties needed for treating the sleep disruption of space flight without producing the adverse side effects associated with benzodiazepines. We hypothesize that pre-sleep administration of melatonin will result in decreased sleep latency, reduced nocturnal sleep disruption, improved sleep efficiency, and enhanced next-day alertness and cognitive performance both in ground-based simulations and during the space shuttle missions. Specifically, we have carried out experiments in which: (1) ambient light intensity aboard the space shuttle is assessed during flight; (2) the impact of space flight on sleep (assessed polysomnographically and actigraphically), respiration during sleep, circadian temperature and melatonin rhythms, waking neurobehavioral alertness and performance is assessed in crew members of the Neurolab and STS-95 missions; (3) the effectiveness of melatonin as a hypnotic is assessed independently of its effects on the phase of the endogenous circadian pacemaker in ground-based studies, using a powerful experimental model of the dyssomnia of space flight; (4) the effectiveness of melatonin as a hypnotic is assessed during the STS-90 (Neurolab) and STS-95 missions in a double-blind placebo-controlled trial. In both flight-based experiments, the effects of melatonin on sleep stages and spectral composition of the EEG during sleep will be determined as well as its effects on daytime alertness and performance; (5) the impact of space flight on sleep and waking neurobehavioral alertness and performance in 30-45-year-old astronauts is compared with its impact in a 77-year-old astronaut. This case study is the first to assess the effects of space flight on an older individual. Because the investigators are still blind to the treatment in this double-blind, placebo-controlled trial, preliminary results will be presented independent of the drug condition.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 544-546
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Studies from space flights over the past three decades have demonstrated that basic physiological changes occur in humans during space flight. These changes include cephalic fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known and until recently, the general approach was to investigate general systemic changes, not basic cellular responses to microgravity. This laboratory has recently studied gene growth and activation of normal osteoblasts (MC3T3-El) during spaceflight. Osteoblast cells were grown on glass coverslips and loaded in the Biorack plunger boxes. The osteoblasts were launched in a serum deprived state, activated in microgravity and collected in microgravity. The osteoblasts were examined for changes in gene expression and signal transduction. Approximately one day after growth activation significant changes were observed in gene expression in 0-G flight samples. Immediate early growth genes/growth factors cox-2, c-myc, bcl2, TGF beta1, bFGF and PCNA showed a significant diminished mRNA induction in microgravity FCS activated cells when compared to ground and 1-G flight controls. Cox-1 was not detected in any of the samples. There were no significant differences in the expression of reference gene mRNA between the ground, 0-G and 1-G samples. The data suggest that quiescent osteoblasts are slower to enter the cell cycle in microgravity and that the lack of gravity itself may be a significant factor in bone loss in spaceflight. Preliminary data from our STS 76 flight experiment support our hypothesis that a basic biological response occurs at the tissue, cellular, and molecular level in 0-G. Here we examine ground-based and space flown data to help us understand the mechanism of bone loss in microgravity.
    Keywords: Aerospace Medicine
    Type: Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology (ISSN 1077-9248); 8; 1; P1-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: NASA Lewis Research Center recently led a multi-organizational acoustic test program. This testing consisted of acoustically exciting a Cassini spacecraft simulator in a full scale 60 foot high Titan 4 payload fairing with various acoustic blanket designs and configurations in a large reverberant acoustic chamber. The primary purpose of this test program was to measure the fairing's internal acoustics and spacecraft vibration, especially the Radioisotope Thermoelectric Generators (RTG) vibration, and to quantify the mitigation efforts in reducing these levels. Key to this reduction effort was the utilization of new acoustic blanket designs. This paper will provide the background and rationale for performing this test program, state the test program's primary and secondary objectives and describe the test matrix, hardware and instrumentation. A second part companion paper will provide the test results and data analysis.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA-TM-107474 , NAS 1.15:107474 , E-10763 , Shock and Vibration; Nov 18, 1996 - Nov 22, 1996; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: A Cassini spacecraft simulator in a full scale 60 foot high Titan 4 payload fairing with various acoustic blanket designs and configurations was recently tested in a large reverberant acoustic chamber. A first part companion paper provides the test configuration details and other background information. This paper addresses the results obtained from this test program. Emphasis will be on the effects of the new blanket designs on reducing the payload fairing's internal acoustics and the vibration response of the spacecraft's Radioisotope Thermoelectric Generators. Other results discussed include: the effect of blankets on fairing vibration, the effect of partial blanket coverage on acoustics and vibration and the effect of tuned vibration absorbers.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA-TM-107475 , NAS 1.15:107475 , E-10764 , Shock and Vibration; Nov 18, 1996 - Nov 22, 1996; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The U.S. Department of Energy (DOE), Lockheed Martin (LM), Stirling Technology Company (STC), and NASA John H. Glenn Research Center (GRC) are currently developing a high-efficiency Stirling convertor for use in a Stirling Radioisotope Generator (SRG). NASA and DOE have identified the SRG for potential use as an advanced power system for future NASA Space Science missions, providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. Low-level, baseshake sine vibration tests were conducted on the Stirling Technology Demonstration Convertor (TDC), at NASA GRC's Structural Dynamics Laboratory, in February 2001, as part of the development of this Stirling technology. The purpose of these tests was to provide a better understanding of the TDC's internal dynamic response to external vibratory base excitations. The knowledge obtained can therein be used to help explain the success that the TDC enjoyed in its previous random vibration qualification tests (December 1999). This explanation focuses on the TDC s internal dynamic characteristics in the 50 to 250 Hz frequency range, which corresponds to the maximum input levels of its qualification random vibration test specification. The internal dynamic structural characteristics of the TDC have now been measured in two separate tests under different motoring and dynamic loading conditions: (1) with the convertor being electrically motored, under a vibratory base-shake excitation load, and (2) with the convertor turned off, and its alternator internals undergoing dynamic excitation via hammer impact loading. This paper addresses the test setup, procedure and results of the base-shake vibration testing conducted on the motored TDC, and will compare these results with those results obtained from the dynamic impact tests (May 2001) on the nonmotored TDC.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2003-212479 , E-14017 , AIAA Paper 2003-6096 , First International Energy Conversion Engineering Conference; Aug 17, 2003 - Aug 21, 2003; Portsmouth, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Magnetospheric Multiscale Mission (MMS) is a NASA mission intended to make fundamental advancements in our understanding of the Earth s magnetosphere. There are three processes that MMS is intended to study including magnetic reconnection, charged particle acceleration, and turbulence. There are four phases of the MMS mission and each phase is designed to study a particular region of the Earth's magnetosphere. The mission is composed of a formation of four spacecraft that are nominally in a regular tetrahedron formation. In this work, we present optimal orbit designs for Phase I and II. This entails designing reference orbits such that the spacecraft dwell-time in the region of interest is a maximum. This is non-trivial because the Earth's magnetosphere is dynamic and its shape and position are not constant in inertial space. Optimal orbit design for MMS also entails designing the formation so that the relative motion of the four spacecraft yields the greatest science return. We develop performance metrics that are directly related to the science return, and use Sequential Quadratic Programming (SQP) to determine optimal relative motion solutions. While designing for optimal science return, we also consider practical constraints such as maximum eclipse time and minimum inter-spacecraft separation distances. Data are presented that illustrates how long we can ensure that the formation remains in the relevant region of the Earth's magnetosphere. We also draw general conclusions about where in the orbit acceptable tetrahedron configurations can be provided and for how long.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 27th Annual Guidance and Control Conference; Feb 01, 2004; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...