ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (3)
  • 2000-2004
  • 1995-1999  (3)
  • 1960-1964
  • 1
    Publication Date: 1995-09-01
    Description: It has been suggested that genes that regulate apoptotic cell death may play an important role in determining the sensitivity of tumor cells to chemotherapy. We have recently cloned a member of the bcl-2 family, bcl- x. To test whether bcl-XL expression affects the sensitivity of tumor cells to chemotherapy, we have created stable cell lines overexpressing bcl-XL and have tested these cells for resistance to cell death induced by metabolic inhibitors and chemotherapeutic agents. Bcl-XL expression dramatically reduces the cytotoxicity of bleomycin, cisplatin, etoposide, vincristine, hygromycin B, and mycophenolic acid for up to 4 days in culture. Bcl-XL does not prevent cells from undergoing cell cycle arrest in response to these drugs, but rather prevents treated cells from undergoing apoptosis. Cell-cycle analysis on cells treated with the chemotherapeutic agents bleomycin, cisplatin, etoposide, and vincristine, show that the drugs cause growth arrest in different positions within the cell cycle. Bcl-XL expressing cells treated with chemotherapeutic drugs retain their proliferative ability after the drugs are removed. Interestingly, vincristine-treated cells expressing bcl-XL become polyploid after drug removal. These data show that bcl-XL protects cells from a wide variety of apoptotic stimuli, acts in multiple positions within the cell cycle, and confers a multidrug resistance phenotype. The ability of bcl-XL to prevent apoptotic cell death in response to chemotherapy-induced DNA damage and cell-cycle arrest may contribute to the accumulation of chromosomal aberrations within tumors. The expression of bcl-XL in tumor cells is likely to be an important indicator of chemotherapeutic efficacy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-08-15
    Description: It has been shown that cytochrome c is released from mitochondria during apoptosis, activates pro-caspase CPP32 (caspase III), and induces DNA fragmentation in mixtures of cytosolic extracts and isolated nuclei. To establish whether cytochrome c can primarily induce apoptosis in intact cells, we used direct electroporation of cytochrome c into murine interleukin-3 (IL-3)–dependent cells. Electroporation of micromolar external concentrations of cytochrome c rapidly induced apoptosis (2 to 4 hours) that was concentration-dependent, did not affect mitochondrial transmembrane potential, and was independent of cell growth. Only certain isoforms of cytochrome c were apoptogenic; yeast cytochrome c and other redox proteins were inactive. Cytochrome c-induced apoptosis was dependent on heme attachment to the apo-enzyme and was completely abolished by caspase inhibitors. Nonapoptogenic isoforms of cytochrome c did not compete for apoptogenic cytochrome c. Although apoptosis induced by IL-3 withdrawal was inhibited by bcl-2 overexpression and expression of an activated MAP-kinase-kinase (MAP-KK), cytochrome c induced apoptosis in the presence of IL-3 signaling, bcl-2 over-expression, expression of activated MAP-KK, and the combined antiapoptotic action of all three. Cytochrome c also induced apoptosis in the leukemic cell line WEHI 3b. However, human HL60 and CEM cells were resistant to cytochrome c-induced apoptosis. HL60 cells did not electroporate, but CEM cells were efficiently electroporated. Our studies with IL-3–dependent cells confirm that the apoptogenic attributes of cytochrome c are identical in intact cells to those in cell extracts. We conclude that cytochrome c can be a prime initiator of apoptosis in intact growing cells and acts downstream of bcl-2 and mitochondria, but that other cells are resistant to its apoptogenic activity. The system described offers a novel, simple approach for investigating regulation of apoptosis by cytochrome c and provides a model linking growth factor signaling to metabolism, survival, and apoptosis control. © 1998 by The American Society of Hematology.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-08-15
    Description: It has been shown that cytochrome c is released from mitochondria during apoptosis, activates pro-caspase CPP32 (caspase III), and induces DNA fragmentation in mixtures of cytosolic extracts and isolated nuclei. To establish whether cytochrome c can primarily induce apoptosis in intact cells, we used direct electroporation of cytochrome c into murine interleukin-3 (IL-3)–dependent cells. Electroporation of micromolar external concentrations of cytochrome c rapidly induced apoptosis (2 to 4 hours) that was concentration-dependent, did not affect mitochondrial transmembrane potential, and was independent of cell growth. Only certain isoforms of cytochrome c were apoptogenic; yeast cytochrome c and other redox proteins were inactive. Cytochrome c-induced apoptosis was dependent on heme attachment to the apo-enzyme and was completely abolished by caspase inhibitors. Nonapoptogenic isoforms of cytochrome c did not compete for apoptogenic cytochrome c. Although apoptosis induced by IL-3 withdrawal was inhibited by bcl-2 overexpression and expression of an activated MAP-kinase-kinase (MAP-KK), cytochrome c induced apoptosis in the presence of IL-3 signaling, bcl-2 over-expression, expression of activated MAP-KK, and the combined antiapoptotic action of all three. Cytochrome c also induced apoptosis in the leukemic cell line WEHI 3b. However, human HL60 and CEM cells were resistant to cytochrome c-induced apoptosis. HL60 cells did not electroporate, but CEM cells were efficiently electroporated. Our studies with IL-3–dependent cells confirm that the apoptogenic attributes of cytochrome c are identical in intact cells to those in cell extracts. We conclude that cytochrome c can be a prime initiator of apoptosis in intact growing cells and acts downstream of bcl-2 and mitochondria, but that other cells are resistant to its apoptogenic activity. The system described offers a novel, simple approach for investigating regulation of apoptosis by cytochrome c and provides a model linking growth factor signaling to metabolism, survival, and apoptosis control. © 1998 by The American Society of Hematology.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...