ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Key words Hyperlipoproteinemia  (2)
  • Electrical resistivity tomography
  • Springer  (3)
  • 2000-2004  (2)
  • 1995-1999  (1)
  • 1975-1979
  • 1950-1954
Collection
Publisher
  • Springer  (3)
Years
  • 2000-2004  (2)
  • 1995-1999  (1)
  • 1975-1979
  • 1950-1954
Year
  • 1
    ISSN: 1432-0495
    Keywords: Key words Karst terranes ; Electrical resistivity tomography ; Sinkholes ; Pinnacles and cutters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Sinkhole collapse is one of the main limitations on the development of karst areas, especially where bedrock is covered by unconsolidated material. Studies of sinkhole formation have shown that sinkholes are likely to develop in cutter (enlarged joint) zones as a result of subterranean erosion by flowing groundwater. Because of the irregular distribution of pinnacles and cutters on the bedrock surface, uncertainties arise when "hit-or-miss" borehole drilling is used to locate potential collapse sites. A high-resolution geophysical technique capable of depicting the details of the bedrock surface is essential for guiding the drilling program. Dipole-dipole electrical resistivity tomography (ERT) was used to map the bedrock surface at a site in southern Indiana where limestone is covered by about 9 m of clayey soils. Forty-nine transects were conducted over an area of approximately 42,037 m2. The electrode spacing was 3 m. The length of the transects varied from 81 to 249 m. The tomographs were interpreted with the aid of soil borings. The repeatability of ERT was evaluated by comparing the rock surface elevations interpreted from pairs of transects where they crossed each other. The average difference was 2.4 m, with a maximum of 10 m. The discrepancy between interpreted bedrock-surface elevations for a transect intersection may be caused by variations in the subsurface geology normal to the transect. Averaging the elevation data interpreted from different transects improved the ERT results. A bedrock surface map was generated using only the averaged elevation data at the transect junctions. The accuracy of the map was further evaluated using data from four exploratory boreholes. The average difference between interpreted and actual bedrock surface-elevations was less than 0.4 m. The map shows two large troughs in the limestone surface: one coinciding with an existing sinkhole basin, while the other is in alignment with a small topographic valley. Because sinkholes were observed at the same elevation interval in similar valleys in the vicinity, the delineated trough may have implications for future land use at the site.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-232X
    Keywords: Key words Hyperlipoproteinemia ; Lipoproteins ; LDL receptor ; Familial hypercholesterolemia ; Genetic diagnosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Heterozygous familial hypercholesterolemia (FH) is a serious disorder causing twice normal low-density lipoprotein (LDL) cholesterol levels early in childhood and very early coronary disease in both men and women. Treatment with multiple medications together with diet can normalize cholesterol levels in many persons with FH and prevent or delay the development of coronary atherosclerosis. Previously published blood cholesterol criteria greatly under-diagnosed new cases of FH among members of known families with FH and over-diagnosed FH among participants of general population screening. Thus, there is a need for accurate and genetically validated criteria for the early diagnosis of heterozygous FH. In the course of investigations of coronary artery disease in Utah, we identified a family whose proband showed elevated plasma levels of LDL cholesterol. To carry out molecular genetic diagnosis of the disease, we screened DNA samples for mutations in all 18 exons and the exon-intron boundaries of the LDL receptor gene (LDLR). Novel point mutations were identified in the proband: a C-to-T transversion at nucleotide position 631, causing substitution of tyrosine for histidine at codon 190 in exon 4 of the LDLR gene. The mutant allele-specific amplification method was used to examine 12 members of the family recruited for the diagnosis. This method helped to unequivocally diagnose 7 individuals as heterozygous for this particular LDLR mutation, while excluding the remaining 5 individuals from carrier status with FH.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1435-232X
    Keywords: Key words Hyperlipoproteinemia ; Lipoproteins ; LDL receptor ; Familial combined hyperlipidemia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Factors predisposing to the phenotypic features of familial combined hyperlipidemia have not been clearly defined. In the course of investigating familial coronary artery disease in Utah, we identified a three-generation family in which multiple members were affected with type IIa hyperlipoproteinemia (HLP IIa), type IIb hyperlipoproteinemia (HLP IIb), or type IV hyperlipoproteinemia (HLP IV). Because several family members had relatively severe low-density lipoprotein (LDL) cholesterol elevation, in order to dissect the possible contribution to the plasma lipoprotein abnormalities in this pedigree, we identified a novel point mutation in the low-density lipoprotein receptor (LDLR) gene, a G-to-A transition at nucleotide position 337 in exon 4. This change substituted lysine for glutamic acid at codon 92 (D92K) of the LDL receptor. By means of mutant allele-specific amplification we determined that the mutation co-segregated with elevated cholesterol and LDL cholesterol in the plasma of family members with HLP IIa and HLP IIb, but not with the elevated plasma triglycerides seen in HLP IIb and HLP IV patients. Thus, in families with apparent familial combined hyperlipidemia, a defective LDLR allele and other genetic or environmental factors that elevate plasma triglycerides may account for the multiple lipid phenotypes observed in this kindred.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...