ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (406)
  • Institute of Physics  (58)
  • American Ceramics Society  (22)
  • 2000-2004  (253)
  • 1995-1999  (182)
  • 1975-1979  (51)
  • 1955-1959
Collection
Years
Year
  • 1
    Publication Date: 1999-08-01
    Print ISSN: 0014-3057
    Electronic ISSN: 1873-1945
    Topics: Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-05-01
    Print ISSN: 0014-3057
    Electronic ISSN: 1873-1945
    Topics: Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 87 (2004), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The oxidation behavior of SiCN–ZrO2 fibers and SiCN at 1350°C are compared. The as-measured parabolic rate constants for the two materials are nearly the same (15–20 × 10−18 m2/s). However, after implementing a correction for the difference in the compositions, the rate constant is 13.2 × 10−18 m2/s for the fiber, and 29.4 × 10−18 m2/s for SiCN. The lower oxidation rate of the fiber is ascribed to the lower carbon content in the fiber material.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The established analysis for the study of oxidation using powder specimens is based on the assumption of monosized particles. The experiments, however, are conducted on powders with a distributed particle size. Here we present a statistical approach for the calculation of the rate constant for oxidation. The results of the analysis are applied to new data on oxidation studies of dense powders of silicon carbonitride amorphous ceramics. The monosized model requires a wide range of values for the rate constant to fit the short term and the long-term data, leading to considerable ambiguity in the estimate of the parabolic rate constant, kp, for oxidation. In contrast the statistical model fits over the entire range of data, yielding a much more reliable value for kp. For example, the monosized approach gave a value in the range 19.7 × 10−18 〈 kp 〈 2.7 × 10−18 m2/s. In contrast, the statistical model yields a specific value of 4.5 × 10−18 m2/s.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The chemical stability of an amorphous silicon carbonitride ceramic, having the composition 0.57SiC·0.43Si3N4·0.49C is studied as a function of nitrogen overpressure at 1873 K. The ceramic suffers a weight loss at pN2 〈 3.5 bar (1 bar = 100 kPa), does not show a weight change from 3.5 to 11 bar, and gains weight above 11 bar. The structure of the ceramic changes with pressure: it is crystalline from 1 to 6 bar, amorphous at ∼10 bar, and is crystalline above ∼10 bar. The weight-loss transition, at 3.5 bar, is in excellent agreement with the prediction from thermodynamic analysis when the activities of carbon, SiC, and Si3N4 are set equal to those of the crystalline forms; this implies that the material crystallizes before decomposition. The amorphous to crystalline transition that occurs at ∼10 bar, and which is accompanied by weight gain, is likely to have taken place by a different mechanism. A nucleation and growth reaction with the atmospheric nitrogen is proposed as the likely mechanism. The supersaturation required to nucleate α-Si3N4 crystals is calculated to be 30 kJ/mol.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 84 (2001), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The effect of compositional modifications on the field-induced phase-transition behavior and dielectric properties of strontium-doped lead zirconate titanate (PZT) ceramics was studied. PZT compositions with different strontium and titanium contents, within the general formula Pb1–xSrx(Zr1–yTiy)O3 and located in the tetragonal antiferroelectric (AFE) and rhombohedral ferroelectric (FE) phase fields were prepared by tape casting and sintering. X-ray diffraction and polarization measurements were used to locate compositions suitable for investigation of the field-induced AFE–FE phase transition. The results indicated that a higher Sr2+ content decreased the polarization and hysteresis and increased the switching field; a lower Ti4+ content decreased the polarization and increased the switching field and hysteresis. A high room-temperature dielectric constant was obtained for compositions near the phase boundary. These results suggest that a combination of both A-site and B-site modifications can be used to tailor ferroelectric properties, such as the switching field and hysteresis, of these strontium-doped PZTs displaying a field-induced AFE–FE phase transition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 84 (2001), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The oxidation kinetics of amorphous silicon carbonitride (SiCN) was measured at 1350°C in ambient air. Two types of specimens were studied: one in the form of thin disks, the other as a powder. Both specimens contained open nanoscale porosity. The disk specimens exhibited weight gain that saturated exponentially with time, analogous to the oxidation behavior of reaction-bonded Si3N4. The saturation value of the weight gain increased linearly with specimen volume, suggesting the nanoscale pore surfaces oxidized uniformly throughout the specimen. This interpretation was confirmed by high-resolution electron microscopy and secondary ion mass spectroscopy. Experiments with the powders (having a particle size much larger than the scale of the nanopores) were also consistent with measurements of the disks. However, the powder specimens, having a high surface-to-volume ratio, continued to show measurable weight gain due to oxidation of the exterior surface. The wide range of values for the surface-to-volume ratio, which included all specimens, permitted a separation of the rate of oxidation of the free surface and the oxidation of the internal surfaces of the nanopores. Surface oxidation data were used to obtain the rate constant for parabolic growth of the oxidation scale. The values for the rate constant obtained for SiCN lay at the lower end of the spectrum of oxidation rates reported in the literature for several Si3N4 and SiC materials. Convergence in the behavior of SiCN and CVD-SiC is ascribed to the purity of both materials. Conversely, it is proposed that the high rates of oxidation of sintered polycrystalline silicon carbides and nitrides, as well as the high degree of variability of these rates, might be related to the impurities introduced by the sintering aids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 83 (2000), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The room-temperature fracture-resistance behavior (R-curve) of unidirectional silicon-carbide-fiber-reinforced zircon-matrix composites has been studied experimentally and numerically. The composites showed strong rising R-curve behavior from experimental results that used in situ crack-length measurements taken via optical microscopy as well as the compliance method. A numerical calculation, based on the available models, then was performed to determine the bridging-stress function from the experimental R-curve. In addition, the effect of the residual stress and constituent properties on the bridging-stress function also has been considered in the numerical calculations. These results have indicated that the bridging-stress function, which controls the fracture resistance of ceramic composites, can be obtained from the carefully measured R-curve.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 84 (2001), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The measurement of axial and radial strains during uniaxial compression creep of SiCN shows the deformation to be entirely volumetric (as opposed to shear). Phenomenologically, the densification strain rate shows a good fit to an exponential stress dependence. This result is explained by the large volume of the diffusing molecular units in the oligomeric amorphous structure of SiCN, which causes the driving force to become nonlinear in stress. The size of the diffusing unit is estimated to be 1.2 nm.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: We present experimental and analytical results for the pyrolysis reactions underlying the conversion of a cross-linked polymer into an amorphous ceramic material. The activation energies, obtained from thermogravimetric data, and chemical analysis of the volatiles by mass spectroscopy are used to identify the reaction pathways. The reaction is determined to be first-order, which is consistent with its solid-state nature. The magnitude of the weight loss is analyzed to calculate the number of molecular sites in the polymer that participate in the reaction. The experiments were conducted on a polymer made from silsesquioxanes that convert into silicon oxycarbide ceramics on pyrolysis. The results show that 〈2.5% of the silicon atoms in the polymer are removed as volatile silanes, and less than one-half of the carbon atoms are lost as methane. These results are a first step in understanding the molecular basis for the ceramic yield, as well as the evolution of the nanostructure as the material changes from an organic into a ceramic state by reactions that can occur at 〈850°C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...