ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • body force method.  (2)
  • 2000-2004  (1)
  • 1995-1999  (1)
  • 1980-1984
  • 1960-1964
Collection
Publisher
Years
  • 2000-2004  (1)
  • 1995-1999  (1)
  • 1980-1984
  • 1960-1964
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of fracture 105 (2000), S. 367-389 
    ISSN: 1573-2673
    Keywords: Stress intensity factor ; tribology ; contact problem ; friction coefficient ; fracture mechanics ; rolling contact fatigue ; surface crack ; body force method.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract In rolling/sliding contact fatigue, it is known that the crack propagates at a characteristic angle θ=15–30 deg to the surface. To analyze the mechanism, however, the body force method has been widely used assuming 3D crack models for θ=45–90. In this study, therefore, the unknown body force densities are newly approximated by using fundamental density functions and polynomials. Then, a semi-elliptical crack model is analyzed for θ=15–90 under compressive residual stresses and Hertzian contact loads. The stress intensity factors K II, K III are calculated with varying the crack shape b/a, inclination crack angle θ, and crack face friction coefficient μ. The calculations show that the present method is useful for the analysis for θ=15–30 deg with high accuracy. It is seen that the K II-values when b/a→0 are larger than the ones when b/a=1 by 0–24% for both under compressive residual stress and Hertzian contact load. Regarding the maximum K II values under Hertzian contact load, the results of θ=15 deg are smaller than the ones of θ=45 deg by 23–34%. Regarding the amplitude of (K II max−K II min), the results of θ=15 deg are smaller than the ones of θ=45 deg by 4–24%. With increasing the value of friction coefficient μ for crack faces the value of K II decreases significantly. When the crack is short and the inclination angle θ is small, the value of friction coefficient f for Hertzian contact load largely affect the K II value.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of fracture 100 (1999), S. 207-225 
    ISSN: 1573-2673
    Keywords: Semi-elliptical crack ; inclined crack ; stress intensity factor ; crack opening displacement ; singular integral equation ; body force method.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract In this paper, a singular integral equation method is applied to calculate the stress intensity factor along crack front of a 3D inclined semi-elliptical surface crack in a semi-infinite body under tension. The stress field induced by displacement discontinuities in a semi-infinite body is used as the fundamental solution. Then, the problem is formulated as a system of integral equations with singularities of the form r −3. In the numerical calculation, the unknown body force doublets are approximated by the product of fundamental density functions and polynomials. The results show that the present method yields smooth variations of mixed modes stress intensity factors along the crack front accurately for various geometrical conditions. The effects of inclination angle, elliptical shape, and Poisson's ratio are considered in the analysis. Crack mouth opening displacements are shown in figures to predict the crack depth and inclination angle. When the inclination angle is 60 degree, the mode I stress intensity factor F I has negative value in the limited region near free surface. Therefore, the actual crack surface seems to contact each other near the surface.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...