ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Annual Reviews
  • 2000-2004  (376)
  • 1995-1999  (595)
  • 1970-1974  (356)
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 295-315 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract It is classically assumed that the far field of a round turbulent jet discharging into quiescent fluid has a unique behavior characterized only by its momentum flux. However, there is now considerable evidence that different discharge conditions at the jet nozzle exit can give rise to very different far-field flows. Perhaps the most striking examples of these are the bifurcating and blooming jets produced by appropriate combinations of controlled axial and circumferential excitations at the nozzle exit. With the right excitations, a jet can be made to divide into two separate jets (bifurcating jet), each of which carries half the axial momentum and spreads in a manner similar to a single jet. Trifurcating jets can also be produced. Other excitations can produce blooming jets, in which the jet explodes into a shower of vortex rings, producing a far-field flow that is quite unlike a normal unexcited jet. Bifurcating and blooming jets exhibit much greater mixing than normal jets, suggesting possible applications in flow control. This article summarizes our work on bifurcating and blooming jets, which began with our discovery of them in the early 1980s and continued through the mid- 1990s. One of us (D.E.P.) continued exploration of flow control using excited jets, first at the McDonnell Douglas Corporation, and more recently at the Georgia Institute of Technology. The key to flow control is the manipulation of the large vortical structures in the near field of the jet. Ultimately this work, and that of others, led to full-scale testing of jet engine exhaust mixing control. There it was shown that the jet temperature downstream of the engine can be very significantly reduced by application of well-designed and easily implemented excitation at the engine discharge, thereby solving problems encountered during ground operations. Related jet control work by other investigators is included in this review.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-01-01
    Print ISSN: 0066-4189
    Electronic ISSN: 1545-4479
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 24 (1995), S. 269-292 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 25 (1996), S. 287-314 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 28 (1999), S. 101-128 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Recent structural and biochemical studies have begun to illuminate how cells solve the problems of recognizing and removing damaged DNA bases. Bases damaged by environmental, chemical, or enzymatic mechanisms must be efficiently found within a large excess of undamaged DNA. Structural studies suggest that a rapid damage-scanning mechanism probes for both conformational deviations and local deformability of the DNA base stack. At susceptible lesions, enzyme-induced conformational changes lead to direct interactions with specific damaged bases. The diverse array of damaged DNA bases are processed through a two-stage pathway in which damage-specific enzymes recognize and remove the base lesion, creating a common abasic site intermediate that is processed by damage-general repair enzymes to restore the correct DNA sequence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 35 (2004), S. 175-197 
    ISSN: 1543-592X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Mutualisms occur when interactions between species produce reciprocal benefits. However, the outcome of these interactions frequently shifts from positive, to neutral, to negative, depending on the environmental and community context, and indirect effects commonly produce unexpected mutualisms that have community-wide consequences. The dynamic, and context dependent, nature of mutualisms can transform consumers, competitors, and parasites into mutualists, even while they consume, compete with, or parasitize their partner species. These dynamic, and often diffuse, mutualisms strongly affect community organization and ecosystem processes, but the historic focus on pairwise interactions decoupled from their more complex community context has obscured their importance. In aquatic systems, mutualisms commonly support ecosystem-defining foundation species, underlie energy and nutrient dynamics within and between ecosystems, and provide mechanisms by which species can rapidly adjust to ecological variance. Mutualism is as important as competition, predation, and physical disturbance in determining community structure, and its impact needs to be adequately incorporated into community theory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 7 (1973), S. 205-223 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 29 (1995), S. 231-288 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 29 (1995), S. 553-575 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 441-468 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Two current frontiers in EPR research are high-field ( nu0 〉 70 GHz, B0 〉 2.5 T ) electron paramagnetic resonance (EPR) and high-field electron-nuclear double resonance (ENDOR). This review focuses on recent advances in high-field ENDOR and its applications to the study of proteins containing native paramagnetic sites. It concentrates on two aspects; the first concerns the determination of the location of protons and is related to the site geometry, and the second focuses on the spin density distribution within the site, which is inherent to the electronic structure. Both spin density and proton locations can be derived from ligand hyperfine couplings determined by ENDOR measurements. A brief description of the experimental methods is presented along with a discussion of the advantages and disadvantages of high-field ENDOR compared with conventional X-band (~ 9.5 GHz) experiments. Specific examples of both protein single crystals and frozen solutions are then presented. These include the determination of the coordinates of water ligand protons in the Mn(II) site of concanavalin A, the detection of hydrogen bonds in a quinone radical in the bacterial photosynthetic reaction center as well as in the tyrosyl radical in ribonuclease reductase, and the study of the spin distribution in copper proteins. The copper proteins discussed are the type I copper of azurin and the binuclear CuA center in a number of proteins. The last part of the review presents a brief discussion of the interpretation of hyperfine couplings using quantum chemical calculations, primarily density functional theory (DFT) methods. Such methods are becoming an integral part of the data analysis tools, as they can facilitate signal assignment and provide the ultimate relation between the experimental hyperfine couplings and the electronic wave function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...