ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (209)
  • 2000-2004  (99)
  • 1995-1999  (69)
  • 1985-1989  (41)
  • 1
    Publication Date: 2004-11-30
    Description: In vitro studies suggest a role for c-Jun N-terminal kinases (JNKs) in proatherogenic cellular processes. We show that atherosclerosis-prone ApoE-/- mice simultaneously lacking JNK2 (ApoE-/- JNK2-/- mice), but not ApoE-/- JNK1-/- mice, developed less atherosclerosis than do ApoE-/- mice. Pharmacological inhibition of JNK activity efficiently reduced plaque formation. Macrophages lacking JNK2 displayed suppressed foam cell formation caused by defective uptake and degradation of modified lipoproteins and showed increased amounts of the modified lipoprotein-binding and -internalizing scavenger receptor A (SR-A), whose phosphorylation was markedly decreased. Macrophage-restricted deletion of JNK2 was sufficient to decrease atherogenesis. Thus, JNK2-dependent phosphorylation of SR-A promotes uptake of lipids in macrophages, thereby regulating foam cell formation, a critical step in atherogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ricci, Romeo -- Sumara, Grzegorz -- Sumara, Izabela -- Rozenberg, Izabela -- Kurrer, Michael -- Akhmedov, Alexander -- Hersberger, Martin -- Eriksson, Urs -- Eberli, Franz R -- Becher, Burkhard -- Boren, Jan -- Chen, Mian -- Cybulsky, Myron I -- Moore, Kathryn J -- Freeman, Mason W -- Wagner, Erwin F -- Matter, Christian M -- Luscher, Thomas F -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1558-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Research, Institute of Physiology, and Division of Cardiology, University Hospital Zurich, CH-8057 Zurich, Switzerland. romeo.ricci@cell.biol.ethz.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15567863" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD36/metabolism ; Aorta/chemistry/pathology ; Apolipoproteins E/genetics ; Arteriosclerosis/*metabolism/pathology ; Bone Marrow Transplantation ; Cells, Cultured ; Cholesterol/metabolism ; Cholesterol, Dietary/administration & dosage ; Diet, Atherogenic ; Endothelial Cells/physiology ; Foam Cells/*metabolism ; Lipoproteins, LDL/metabolism ; Macrophages/*metabolism ; Macrophages, Peritoneal/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitogen-Activated Protein Kinase 8/metabolism ; Mitogen-Activated Protein Kinase 9/genetics/*metabolism ; Muscle, Smooth, Vascular/cytology ; Myocytes, Smooth Muscle/physiology ; Phosphorylation ; Receptors, Immunologic/genetics/*metabolism ; Receptors, Scavenger ; Scavenger Receptors, Class A ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-08-07
    Description: The small guanosine triphosphatases (GTPases) Cdc42 and Rac1 regulate E-cadherin-mediated cell-cell adhesion. IQGAP1, a target of Cdc42 and Rac1, was localized with E-cadherin and beta-catenin at sites of cell-cell contact in mouse L fibroblasts expressing E-cadherin (EL cells), and interacted with E-cadherin and beta-catenin both in vivo and in vitro. IQGAP1 induced the dissociation of alpha-catenin from a cadherin-catenin complex in vitro and in vivo. Overexpression of IQGAP1 in EL cells, but not in L cells expressing an E-cadherin-alpha-catenin chimeric protein, resulted in a decrease in E-cadherin-mediated cell-cell adhesive activity. Thus, IQGAP1, acting downstream of Cdc42 and Rac1, appears to regulate cell-cell adhesion through the cadherin-catenin pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuroda, S -- Fukata, M -- Nakagawa, M -- Fujii, K -- Nakamura, T -- Ookubo, T -- Izawa, I -- Nagase, T -- Nomura, N -- Tani, H -- Shoji, I -- Matsuura, Y -- Yonehara, S -- Kaibuchi, K -- New York, N.Y. -- Science. 1998 Aug 7;281(5378):832-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma 630-0101, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9694656" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cadherins/*metabolism ; *Cell Adhesion ; Cell Cycle Proteins/*metabolism ; Cell Membrane/metabolism ; Cytoskeletal Proteins/metabolism ; GTP Phosphohydrolases/*metabolism ; GTP-Binding Proteins/*metabolism ; GTPase-Activating Proteins ; L Cells (Cell Line) ; Mice ; Mutation ; Proteins/*metabolism ; Recombinant Fusion Proteins/metabolism ; Recombinant Proteins/metabolism ; *Trans-Activators ; alpha Catenin ; beta Catenin ; cdc42 GTP-Binding Protein ; rac GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-02-26
    Description: Most types of antibiotic resistance impose a biological cost on bacterial fitness. These costs can be compensated, usually without loss of resistance, by second-site mutations during the evolution of the resistant bacteria in an experimental host or in a laboratory medium. Different fitness-compensating mutations were selected depending on whether the bacteria evolved through serial passage in mice or in a laboratory medium. This difference in mutation spectra was caused by either a growth condition-specific formation or selection of the compensated mutants. These results suggest that bacterial evolution to reduce the costs of antibiotic resistance can take different trajectories within and outside a host.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bjorkman, J -- Nagaev, I -- Berg, O G -- Hughes, D -- Andersson, D I -- New York, N.Y. -- Science. 2000 Feb 25;287(5457):1479-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Solna, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10688795" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; Anti-Bacterial Agents/*pharmacology ; *Antiporters ; Carrier Proteins/genetics ; Culture Media ; Drug Resistance, Microbial/*genetics ; Escherichia coli Proteins ; Evolution, Molecular ; Female ; Fusidic Acid/pharmacology ; Membrane Proteins/genetics ; Mice ; Mice, Inbred BALB C ; *Mutation ; Peptide Elongation Factor G/genetics ; Ribosomal Proteins/genetics ; Salmonella typhimurium/*drug effects/*genetics/growth & development/metabolism ; Selection, Genetic ; Serial Passage ; Streptomycin/pharmacology ; Suppression, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-09-22
    Description: The molecular adapter Fyb/Slap regulates signaling downstream of the T cell receptor (TCR), but whether it plays a positive or negative role is controversial. We demonstrate that Fyb/Slap-deficient T cells exhibit defective proliferation and cytokine production in response to TCR stimulation. Fyb/Slap is also required in vivo for T cell-dependent immune responses. Functionally, Fyb/Slap has no apparent role in the activation of known TCR signaling pathways, F-actin polymerization, or TCR clustering. Rather, Fyb/Slap regulates TCR-induced integrin clustering and adhesion. Thus, Fyb/Slap is the first molecular adapter to be identified that couples TCR stimulation to the avidity modulation of integrins governing T cell adhesion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Griffiths, E K -- Krawczyk, C -- Kong, Y Y -- Raab, M -- Hyduk, S J -- Bouchard, D -- Chan, V S -- Kozieradzki, I -- Oliveira-Dos-Santos, A J -- Wakeham, A -- Ohashi, P S -- Cybulsky, M I -- Rudd, C E -- Penninger, J M -- New York, N.Y. -- Science. 2001 Sep 21;293(5538):2260-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Amgen Institute, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11567140" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; *Adaptor Proteins, Signal Transducing ; Animals ; Antigens, CD/metabolism ; Antigens, CD3/metabolism ; Antigens, Differentiation, T-Lymphocyte/metabolism ; B-Lymphocytes/immunology ; Carrier Proteins/genetics/*physiology ; Cell Adhesion ; Cell Adhesion Molecules/metabolism ; Chimera ; Gene Targeting ; Humans ; Immunization ; Immunoglobulin G/biosynthesis ; Integrins/*metabolism ; Intercellular Adhesion Molecule-1/metabolism ; Interferon-gamma/biosynthesis ; Interleukin-2/biosynthesis/pharmacology ; Lectins, C-Type ; *Lymphocyte Activation ; Lymphocyte Function-Associated Antigen-1/metabolism ; Mice ; Phosphoproteins/genetics/*physiology ; Receptors, Antigen, T-Cell/immunology/metabolism ; Receptors, Interleukin-2/metabolism ; Recombinant Proteins/metabolism ; Signal Transduction ; T-Lymphocytes/immunology/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-11-02
    Description: Inactivation of the murine TATA binding protein (TBP) gene by homologous recombination leads to growth arrest and apoptosis at the embryonic blastocyst stage. However, after loss of TBP, RNA polymerase II (pol II) remains in a transcriptionally active phosphorylation state, and in situ run-on experiments showed high levels of pol II transcription comparable to those of wild-type cells. In contrast, pol I and pol III transcription was arrested. Our results show a differential dependency of the RNA polymerases on TBP and provide evidence for TBP-independent pol II transcriptional mechanisms that allow reinitiation and maintenance of gene transcription in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martianov, Igor -- Viville, Stephane -- Davidson, Irwin -- New York, N.Y. -- Science. 2002 Nov 1;298(5595):1036-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, B.P. 163, 67404 Illkirch Cedex, Communaute Urbaine de Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12411709" target="_blank"〉PubMed〈/a〉
    Keywords: Amanitins/pharmacology ; Animals ; Apoptosis ; Blastocyst/metabolism ; Cell Division ; Cell Nucleolus/metabolism ; Crosses, Genetic ; Embryonic and Fetal Development ; Female ; Gene Silencing ; Gene Targeting ; Male ; Mice ; Mice, Inbred C57BL ; Microscopy, Confocal ; Phenotype ; RNA Polymerase I/metabolism ; RNA Polymerase II/*metabolism ; RNA Polymerase III/metabolism ; Recombination, Genetic ; TATA-Box Binding Protein/genetics/*physiology ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2002-09-07
    Description: To rigorously test the in vivo cell fate specificity of bone marrow (BM) hematopoietic stem cells (HSCs), we generated chimeric animals by transplantation of a single green fluorescent protein (GFP)-marked HSC into lethally irradiated nontransgenic recipients. Single HSCs robustly reconstituted peripheral blood leukocytes in these animals, but did not contribute appreciably to nonhematopoietic tissues, including brain, kidney, gut, liver, and muscle. Similarly, in GFP+:GFP- parabiotic mice, we found substantial chimerism of hematopoietic but not nonhematopoietic cells. These data indicate that "transdifferentiation" of circulating HSCs and/or their progeny is an extremely rare event, if it occurs at all.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wagers, Amy J -- Sherwood, Richard I -- Christensen, Julie L -- Weissman, Irving L -- 5T32AI07290-16/AI/NIAID NIH HHS/ -- CA-86065/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Sep 27;297(5590):2256-9. Epub 2002 Sep 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA. awagers@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12215650" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD45/analysis ; Brain/cytology ; *Cell Differentiation ; Cell Lineage ; Chimera ; Fluorescent Antibody Technique ; Green Fluorescent Proteins ; *Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/cytology/*physiology ; Hepatocytes/cytology ; Intestinal Mucosa/cytology/radiation effects ; Intestine, Large/cytology ; Intestine, Small/cytology ; Kidney/cytology ; Luminescent Proteins/analysis ; Lung/cytology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Muscle, Skeletal/cytology ; Myocardium/cytology ; Neurons/cytology ; Parabiosis ; Regeneration ; Stem Cells/cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2003-08-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guerrero, Isabel -- Ruiz i Altaba, Ariel -- New York, N.Y. -- Science. 2003 Aug 8;301(5634):774-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centro de Biologia Molecular "Severo Ochoa," CSIC-UAM, Universidad Autonoma de Madrid, Madrid E-28049, Spain. iguerrero@cbm.uam.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12907783" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Caspase 3 ; Caspases/metabolism ; Central Nervous System/cytology/*embryology ; Chick Embryo ; Drosophila/growth & development/metabolism ; Drosophila Proteins/metabolism ; Hedgehog Proteins ; Humans ; Intracellular Signaling Peptides and Proteins ; Ligands ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mutation ; Neoplasms/etiology ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface ; Signal Transduction ; Trans-Activators/*metabolism ; Wings, Animal/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wechsler, A -- Brafman, A -- Shafir, M -- Heverin, M -- Gottlieb, H -- Damari, G -- Gozlan-Kelner, S -- Spivak, I -- Moshkin, O -- Fridman, E -- Becker, Y -- Skaliter, R -- Einat, P -- Faerman, A -- Bjorkhem, I -- Feinstein, E -- New York, N.Y. -- Science. 2003 Dec 19;302(5653):2087.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Quark Biotech, Inc., 10265 Carnegie Avenue, Cleveland, OH 44106, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684813" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue ; Animals ; Bile Acids and Salts/biosynthesis ; Cholesterol/blood/*deficiency/metabolism/*physiology ; Desmosterol/*metabolism ; Female ; Gene Targeting ; Growth ; Humans ; Infertility ; Liver/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Models, Animal ; Nerve Tissue Proteins/*genetics/metabolism ; Oxidoreductases Acting on CH-CH Group Donors/*genetics/metabolism ; Phenotype ; Sex Characteristics ; Testis/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-04-26
    Description: Alpha-synuclein (alpha-syn) and tau polymerize into amyloid fibrils and form intraneuronal filamentous inclusions characteristic of neurodegenerative diseases. We demonstrate that alpha-syn induces fibrillization of tau and that coincubation of tau and alpha-syn synergistically promotes fibrillization of both proteins. The in vivo relevance of these findings is grounded in the co-occurrence of alpha-syn and tau filamentous amyloid inclusions in humans, in single transgenic mice that express A53T human alpha-syn in neurons, and in oligodendrocytes of bigenic mice that express wild-type human alpha-syn plus P301L mutant tau. This suggests that interactions between alpha-syn and tau can promote their fibrillization and drive the formation of pathological inclusions in human neurodegenerative diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giasson, Benoit I -- Forman, Mark S -- Higuchi, Makoto -- Golbe, Lawrence I -- Graves, Charles L -- Kotzbauer, Paul T -- Trojanowski, John Q -- Lee, Virginia M-Y -- New York, N.Y. -- Science. 2003 Apr 25;300(5619):636-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12714745" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid/chemistry/metabolism ; Animals ; Biopolymers ; *Brain Chemistry ; Humans ; Mice ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Mice, Transgenic ; Microscopy, Electron ; Microscopy, Fluorescence ; Microscopy, Immunoelectron ; Nerve Tissue Proteins/analysis/*chemistry/metabolism ; Neurodegenerative Diseases/metabolism ; Neurons/chemistry ; Oligodendroglia/chemistry ; Protein Conformation ; Protein Isoforms/chemistry/metabolism ; Synucleins ; Tauopathies/metabolism ; alpha-Synuclein ; tau Proteins/analysis/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2002-05-04
    Description: There is a relation between stress and alcohol drinking. We show that the corticotropin-releasing hormone (CRH) system that mediates endocrine and behavioral responses to stress plays a role in the control of long-term alcohol drinking. In mice lacking a functional CRH1 receptor, stress leads to enhanced and progressively increasing alcohol intake. The effect of repeated stress on alcohol drinking behavior appeared with a delay and persisted throughout life. It was associated with an up-regulation of the N-methyl-d-aspartate receptor subunit NR2B. Alterations in the CRH1 receptor gene and adaptional changes in NR2B subunits may constitute a genetic risk factor for stress-induced alcohol drinking and alcoholism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sillaber, Inge -- Rammes, Gerhard -- Zimmermann, Stephan -- Mahal, Beatrice -- Zieglgansberger, Walter -- Wurst, Wolfgang -- Holsboer, Florian -- Spanagel, Rainer -- New York, N.Y. -- Science. 2002 May 3;296(5569):931-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany. sillaber@mpipsykl.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11988580" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; *Alcohol Drinking ; Alcoholism/*etiology/genetics ; Animals ; Brain/metabolism ; Corticotropin-Releasing Hormone/physiology ; Ethanol/blood ; Female ; Hippocampus/physiology ; In Vitro Techniques ; Male ; Mice ; Mice, Knockout ; Models, Animal ; Mutation ; Receptors, AMPA/metabolism ; Receptors, Corticotropin-Releasing Hormone/*genetics/*physiology ; Receptors, Kainic Acid/metabolism ; Receptors, N-Methyl-D-Aspartate/*metabolism ; Signal Transduction ; Stress, Physiological/physiopathology ; Stress, Psychological/*physiopathology ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...