ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physical Society  (73)
  • American Institute of Physics (AIP)  (35)
  • 2000-2004  (26)
  • 1995-1999  (35)
  • 1985-1989  (47)
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 88 (1988), S. 4621-4636 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We used rotational cooling of molecules to ∼5 K by supersonic expansion and state-selective, multilevel saturation spectroscopy to obtain high-resolution spectra of the fundamental and first and second overtone transitions of C–H stretching modes in ground-electronic-state benzene and its dimer. Greatly reduced linewidths (〈3 cm−1 FWHM) in the rich spectra show that previously reported spectra have suffered from inhomogeneous congestion. Our observed spectral widths indicate that the vibrational lifetimes of the C–H stretches are at least a few ps, even at the energy of the second overtone (8800 cm−1). The "local mode'' picture appears to apply when at least three quanta of C–H stretching motion are present. Spectra of the dimer are similar to those of the monomer but show a red shift of a few cm−1, the appearance of combination bands involving van der Waals vibrational modes, some intensity changes, and a broadening of spectral features that increases with the vibrational energy. The dimer's predissociation lifetime at ∼3000 cm−1 vibrational energy exceeds ∼3 ps.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 89 (1988), S. 3386-3387 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The adsorption of the surfactant sodium–dodecyl naphthalene–sulfonate from the bulk to the water–air interface was studied by optical second harmonic generation. An initial rapid Langmuir type of adsorption to about 80% of a monolayer is observed, followed by a much slower adsorption until a full monolayer is formed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 88 (1988), S. 5362-5376 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have used IR excitation to selectively create populations in admixtures of the zeroth-order states comprising the ∼3000 cm−1 "C–H stretching Fermi triad'' of benzene. UV spectra of the 260 nm A˜(1B2u)←X˜(1A1g) transition in the IR-excited molecules show several new bands, which we have assigned. Final states in the UV transitions are some vibrational levels which have not been detected before, allowing us to find several excited-state vibrational frequencies. We have determined ν'3 =1327±3 cm−1, ν19 =1405±3 cm−1, and ν'20 =3084±5 cm−1. Also, vibrational structure which was unresolved in IR spectra of the "Fermi triad'' was resolved in the UV double resonance spectra, confirming that the C–H stretching admixture is really a tetrad. The 3048, 3079, and 3101 cm−1 states had formerly been given the labels ν‘20, ν‘8+ν‘19, and ν‘1+ν‘6+ν‘19, respectively. Actually, the middle level most nearly resembles ν‘1+ν‘6+ν‘19, and the 3101 cm−1 level is strongly mixed with ν‘3+ν‘6+ν‘15. As predicted by molecular orbital theory, excited-state C–H bending and stretching frequencies are not very different from those in the ground state. Furthermore, we suggest that the four C–H stretching frequencies increase uniformly by ∼20 cm−1 in the excited state; reexamination of the Atkinson and Parmenter 260 nm A˜←X˜ spectrum leads us to reassign ν2 from 3130 to ∼3093 cm−1, which is 19 cm−1 above ν‘2. There is a Fermi resonance between the ν6+ν'20 level and another level ∼13 cm−1 lower in energy; the strength of the perturbation is ∼18 cm−1. Possibilities for the perturbing vibrational state are ν6+ν'8+ν14 and ν'6+ν13.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 2165-2171 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The magnetic properties of RFe12−xNbx and R(Fe1−yCoy)11.3Nb0.7 compounds with R=Y, Tb, and Dy have been investigated in the concentration region defined by 0.6〈x〈0.8 and y≤0.3, where the compounds are single phase with the ThMn12-type of structure. The Curie temperature TC of the RFe12−xNbx compounds is almost independent of the Nb content whereas the saturation magnetization Ms decreases with increasing Nb content. The spin-reorientation temperature Tsr of the TbFe12−xNbx and DyFe12−xNbx compounds decreases monotonically with increasing x. Substitution of Co for Fe in RFe11.3Nb0.7 leads to a remarkable increase of TC and the appearance of a maximum in the Co-concentration dependence of Ms. In contrast, Tsr decreases monotonically with increasing Co content for both R=Tb and Dy. The modification of T- and R-sublattice anisotropy originating from a change of the Nb content and from substitution of Co for Fe was analyzed by combining crystalline electric field theory and the individual-site model. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 1380-1388 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Thin tungsten nitride (WNx) films were produced by reactive dc magnetron sputtering of tungsten in an Ar–N2 gas mixture. The effects of the variation of nitrogen partial pressure on the composition, residual stress, and structural properties of these films as well as the influence of postdeposition annealing have been studied. The films were analyzed in situ by a cantilever beam technique, and ex situ by x-ray photoelectron spectroscopy, electron energy-loss spectroscopy, x-ray diffraction, and transmission electron microscopy (TEM). It was found that at N concentrations below 8 at. %, the films (typical 150 nm in thickness) were essentially bcc α-W. An amorphous phase was observed in the range of about 12–28 at. % N. When N concentrations reached ∼32 at. % or above, a single-phase structure of W2N was formed. Annealing of the as-deposited films resulted in crystallization of the amorphous or an improved crystallinity of the W2N structure, which was related to the N concentration. Stresses of all W and WNx films were compressive. As the N concentration was increased, the stress decreased and reached its lowest value for amorphous samples near 20 at. % N. Past this point, the compression of films rose again. These results can be ascribed to structural changes induced by the pressure-dependent variation in the average energy of particles bombarding the film during deposition. Cross-sectional TEM studies showed that all crystalline WNx films had columnar microstructures. The average column width near stoichiometry of W2N was ∼20±5 nm near the film surface. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 85 (1999), S. 5030-5032 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The giant magnetoresistance (GMR) effects in sandwiched Co/Cu/Co and Co/CuMn/Co structures have been investigated. The GMR oscillates with the spacer thickness for both cases, but is nearly antiphased. With diluted Mn atoms in the Cu spacer, the GMR curve as a function of the magnetic field changes a lot, and the saturation/switching field for GMR can be reduced greatly compared with that in Co/Cu/Co systems. This may indicate one way to obtain a highly sensitive GMR. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 88 (1988), S. 2249-2263 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have obtained high-resolution (∼1.5 cm−1) photoionization spectra of supersonically cooled (Trot∼50 K) H2O and D2O in the 1000–900 A(ring) range. The light source, which used the technique of frequency tripling in a pulsed free jet of gas, is described briefly. Spectra are rotationally resolved. Vibrationally excited autoionizing Rydberg series converging to the ground electronic [X˜; (1b1)−1] state of the molecular ion are detected. This may well be the first example of a highly resolved Rydberg spectrum of a stable polyatomic molecule. From the convergence limit, the ionization potential H2O is determined to be 101 777±7 cm−1. Intensities of the Rydberg state autoionization signals are smaller than predicted with known Franck–Condon factors, indicating that predissociation is a competitive decay channel. Rydberg state lifetimes are ∼1 ps, deduced from homogeneous linewidths. Autoionizing features from Rydberg states associated with the ion's quasilinear A˜ (3a1)−1 state are observed with linewidths above 10 cm−1, indicating that their lifetimes are less than ∼0.5 ps. Rotational assignments of some of the bands in this linear←bent transition show that the Rydberg and ionic state geometries are nearly identical. A consistent assignment of the controversial bending (v2) quantum number and Rydberg series quantum defect δ=−0.037 have been provided.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 87 (2000), S. 4039-4041 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In modeling electromigration failure, it is common to employ the concept of a critical stress at which interconnect failure occurs. In this report, we illustrate that the atomic flux divergence, obtained directly from the one-dimensional stress-based modeling, is more appropriate in characterizing the formation of void in electromigration. A numerical analysis was carried out, to model the evolution of stress, atomic flux, and flux divergence in an aluminum line containing a fast-diffusion segment. The maximum flux divergence, not the maximum tensile stress, predicts the voiding location which is consistent with microscopic observations in the experiments of Joo et al. [Acta. Mater. 46, 1969 (1998); J. Appl. Phys. 85, 2108 (1999)] utilizing nanoindented single-crystal aluminum lines. This is because the flux divergence directly reflects the extent of matter depletion, and thus the propensity of voiding. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 87 (2000), S. 177-187 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The residual stress and structural properties of tungsten thin films prepared by magnetron sputtering as a function of sputtering-gas pressure are reported. The films were analyzed in situ by a cantilever beam technique, and ex situ by x-ray diffraction, cross-sectional transmission electron microscopy (TEM), x-ray photoelectron spectroscopy, electron energy-loss spectrometry, and energy-filtered electron diffraction. It is found that the residual stress, microstructure, and surface morphology are clearly correlated. The film stresses, determined in real time during the film formation, depend strongly on the argon pressure and change from highly compressive to highly tensile in a relatively narrow pressure range of 12–26 mTorr. For pressures exceeding ∼60 mTorr, the stress in the film is nearly zero. It is also found that the nonequilibrium A15 W structure is responsible for the observed tensile stress, whereas the stable bcc W or a mixture of bcc W and A15 W are in compression. Cross-sectional TEM evidence indicates that the compressively stressed films contain a dense microstructure without any columns, while the films having tensile stress have a very columnar microstructure. High sputtering-gas pressure conditions yield dendritic-like film growth, resulting in complete relaxation of the residual tensile stresses. Structural details of the A15 W and amorphous W phases were also investigated at the atomic level using energy-filtered electron diffraction with reduced radial distribution function G(r) analysis. By comparing the experimental and simulated G(r) distributions, the A15 W structure is determined to be composed of ordered and stacking faulted W3W structures and the amorphous W has a disordered structure of W3O. The effect of oxygen in stabilizing the A15 phase found is explained on the basis of structural and thermodynamic stability. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 80 (1996), S. 1388-1398 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experimental and numerical results are presented on the evolution of stresses and the accompanying changes in the overall curvatures due to the patterning of silicon oxide lines on silicon wafers and subsequent thermal loading. The finite element analysis involves a generalized plane strain formulation, which is capable of predicting the wafer curvatures in directions parallel and perpendicular to the lines, for both the patterning and thermal cycling operations. The predictions compare reasonably well with systematic curvature measurements for several different geometrical combinations of the thickness, width and spacing of the patterned lines. The non-uniform stress fields within the fine lines and the substrate are also analyzed. It is shown both experimentally and theoretically that certain geometries of patterned lines on the substrate induce dramatic shape changes and reversals of curvature in the direction perpendicular to the lines. The mechanistic origin of this effect is identified to be the Poisson effect arising from the anisotropic strain coupling in the patterned structure. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...