ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Sequence Data  (3)
  • Sequence Alignment  (2)
  • American Association for the Advancement of Science (AAAS)  (3)
  • Springer Nature
  • 2000-2004  (2)
  • 1995-1999
  • 1990-1994  (1)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (3)
  • Springer Nature
Years
Year
  • 1
    Publication Date: 2001-02-07
    Description: The disulfide reducing enzymes glutathione reductase and thioredoxin reductase are highly conserved among bacteria, fungi, worms, and mammals. These proteins maintain intracellular redox homeostasis to protect the organism from oxidative damage. Here we demonstrate the absence of glutathione reductase in Drosophila melanogaster, identify a new type of thioredoxin reductase, and provide evidence that a thioredoxin system supports GSSG reduction. Our data suggest that antioxidant defense in Drosophila, and probably in related insects, differs fundamentally from that in other organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kanzok, S M -- Fechner, A -- Bauer, H -- Ulschmid, J K -- Muller, H M -- Botella-Munoz, J -- Schneuwly, S -- Schirmer, R -- Becker, K -- New York, N.Y. -- Science. 2001 Jan 26;291(5504):643-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center of Biochemistry, Im Neuenheimer Feld 328, Heidelberg University, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11158675" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Binding Sites ; Drosophila melanogaster/*enzymology/genetics/metabolism ; Genes, Insect ; Glutathione/*metabolism ; Glutathione Disulfide/metabolism ; Glutathione Reductase/*metabolism ; Humans ; Kinetics ; Molecular Sequence Data ; Mutation ; NADP/metabolism ; Oxidation-Reduction ; Sequence Alignment ; Species Specificity ; Substrate Specificity ; Thioredoxin-Disulfide Reductase/antagonists & ; inhibitors/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-04-15
    Description: The mechanisms by which hepatitis C virus (HCV) induces chronic infection in the vast majority of infected individuals are unknown. Sequences within the HCV E1 and E2 envelope genes were analyzed during the acute phase of hepatitis C in 12 patients with different clinical outcomes. Acute resolving hepatitis was associated with relative evolutionary stasis of the heterogeneous viral population (quasispecies), whereas progressing hepatitis correlated with genetic evolution of HCV. Consistent with the hypothesis of selective pressure by the host immune system, the sequence changes occurred almost exclusively within the hypervariable region 1 of the E2 gene and were temporally correlated with antibody seroconversion. These data indicate that the evolutionary dynamics of the HCV quasispecies during the acute phase of hepatitis C predict whether the infection will resolve or become chronic.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farci, P -- Shimoda, A -- Coiana, A -- Diaz, G -- Peddis, G -- Melpolder, J C -- Strazzera, A -- Chien, D Y -- Munoz, S J -- Balestrieri, A -- Purcell, R H -- Alter, H J -- New York, N.Y. -- Science. 2000 Apr 14;288(5464):339-44.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Sciences, University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy. farcip@pacs.unica.it〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10764648" target="_blank"〉PubMed〈/a〉
    Keywords: Acute Disease ; Adult ; Aged ; Antibodies, Viral ; Disease Progression ; *Evolution, Molecular ; Female ; Genes, Viral ; Genetic Variation ; Hepacivirus/*genetics/immunology/physiology ; Hepatitis C/immunology/*virology ; Hepatitis C Antibodies/biosynthesis ; Hepatitis C, Chronic/immunology/*virology ; Humans ; Male ; Middle Aged ; Molecular Sequence Data ; Phylogeny ; Prospective Studies ; Selection, Genetic ; Time Factors ; Viral Envelope Proteins/*genetics/immunology ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1992-02-28
    Description: Multiple human immunodeficiency virus type-1 sequences from the V3 and V4-V5 regions of the envelope gene were analyzed from three mother-infant pairs. The infants' viral sequences were less diverse than those of their mothers. In two pairs, a proviral form infrequently found in the mother predominated in her infant. A conserved N-linked glycosylation site within the V3 region, present in each mother's sequence set, was absent in all of the infants' sequence sets. These findings demonstrate that a minor subset of maternal virus is transmitted to the infant.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wolinsky, S M -- Wike, C M -- Korber, B T -- Hutto, C -- Parks, W P -- Rosenblum, L L -- Kunstman, K J -- Furtado, M R -- Munoz, J L -- AI-32535/AI/NIAID NIH HHS/ -- HD26619-01/HD/NICHD NIH HHS/ -- P01-25569/PHS HHS/ -- New York, N.Y. -- Science. 1992 Feb 28;255(5048):1134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Northwestern University Medical School, Chicago, IL 60611.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1546316" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/congenital/microbiology/*transmission ; Amino Acid Sequence ; Base Sequence ; Female ; Genotype ; Glycosylation ; HIV Antigens/genetics ; HIV Envelope Protein gp120/genetics/immunology ; HIV-1/*genetics/immunology ; Humans ; Infant ; Maternal-Fetal Exchange ; Molecular Sequence Data ; Oligodeoxyribonucleotides/chemistry ; Polymerase Chain Reaction ; Pregnancy ; Selection, Genetic ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...