ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (3)
  • 1
    Publication Date: 2019-07-12
    Description: Theoretical analysis and some experiments have demonstrated that siliconon- insulator (SOI) 4-gate transistors the type known as G(exp 4)FETs could be efficiently used for in-plane crossing of signal paths. Much of the effort of designing very-large-scale integrated (VLSI) circuits is focused on area-efficient routing of signals. The main source of difficulty in VLSI signal routing is the requirement to prevent crossing, in the same plane, of wires that are meant to be kept electrically insulated from each other. Consequently, it often becomes necessary to design and build VLSI circuits in multiple layers with vias (connections between conductors in different layers at selected locations). Suitable devices that would prevent, or at least sufficiently suppress, undesired electrical coupling (cross-talk) between wires crossing in the same plane would enable compact, simpler implementation complex interconnection networks with in-plane crossings that, heretofore, have not been possible in VLSI circuitry. The use of G4FETs as in-plane signal-crossing devices or routers, in combination with the use of G(exp 4)FETs as universal programmable logic gates, would create opportunities for reducing complexity in VLSI design.
    Keywords: Man/System Technology and Life Support
    Type: NPO-41827 , NASA Tech Briefs, August 2007; 5-6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: An analysis of a patented generic silicon- on-insulator (SOI) electronic device called a G4-FET has revealed that the device could be designed to function as a universal and programmable logic gate. The universality and programmability could be exploited to design logic circuits containing fewer discrete components than are required for conventional transistor-based circuits performing the same logic functions. A G4-FET is a combination of a junction field-effect transistor (JFET) and a metal oxide/semiconductor field-effect transistor (MOSFET) superimposed in a single silicon island and can therefore be regarded as two transistors sharing the same body. A G4-FET can also be regarded as a single transistor having four gates: two side junction-based gates, a top MOS gate, and a back gate activated by biasing of the SOI substrate. Each of these gates can be used to control the conduction characteristics of the transistor; this possibility creates new options for designing analog, radio-frequency, mixed-signal, and digital circuitry. With proper choice of the specific dimensions for the gates, channels, and ancillary features of the generic G4-FET, the device could be made to function as a three-input, one-output logic gate. As illustrated by the truth table in the top part of the figure, the behavior of this logic gate would be the inverse (the NOT) of that of a majority gate. In other words, the device would function as a NOT-majority gate. By simply adding an inverter, one could obtain a majority gate. In contrast, to construct a majority gate in conventional complementary metal oxide/semiconductor (CMOS) circuitry, one would need four three-input AND gates and a four-input OR gate, altogether containing 32 transistors.
    Keywords: Man/System Technology and Life Support
    Type: NPO-41698 , NASA Tech Briefs, July 2007; 15-16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-24
    Description: An universal and programmable logic gate based on G.sup.4-FET technology is disclosed, leading to the design of more efficient logic circuits. A new full adder design based on the G.sup.4-FET is also presented. The G.sup.4-FET can also function as a unique router device offering coplanar crossing of signal paths that are isolated and perpendicular to one another. This has the potential of overcoming major limitations in VLSI design where complex interconnection schemes have become increasingly problematic.
    Keywords: Computer Programming and Software
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...