ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (2)
Collection
Years
Year
  • 1
    Publication Date: 2009-09-23
    Description: Changes in the S-P delay of repeating earthquakes near Parkfield, California, after strong shaking in the 2004 mainshock, occur at surface stations but not at borehole stations. This result indicates that rock damage occurs mainly in the upper few tens of meters in fractured rock with a low seismic velocity. In addition, changes in coda-primary delay are comparable to changes in S-P delay. This observation along with the lack of S-P delay changes at borehole stations yields a simple model for the coda. Direct waves pass through the shallow damaged layer once. Coda waves scatter or refract in the deep undamaged subsurface and hence also pass through the subsurface just once. The coda, however, contains some brief reverberations within the shallow subsurface where the additional path length scales to the thickness of the shallow layer. The coda-primary delay measured by correlation includes both the zero delay change of direct coda and the increased delay of reverberating coda. Published changes in Rayleigh-wave group velocity before and after the Parkfield mainshock are compatible with their main cause being from the shallow velocity changes inferred from repeating earthquakes but have little spatial resolution. Stacking of earthquake seismograms resolved surface reflections at one shallow (63 m deep) borehole station GHIB. A change in P-wave travel-time body of approximately 8 msec was marginally resolved and is compatible with the repeating earthquake S-P delay changes. Autocorrelation passive seismology resolved approximately 32 msec P-wave reverberation delay change above the 251 m deep borehole station CCRB.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-11-24
    Description: We propose the Chaotian Eon to demarcate geologic time from the origin of the Solar System to the Moon-forming impact on Earth. This separates the solar system wide processes of planet formation from the subsequent divergent evolution of the inner planets. We further propose the division of the Hadean Eon into eras and periods and naming the proto-Earth Tellus.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...