ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (4)
Collection
Publisher
Years
Year
  • 1
  • 2
    Publication Date: 2005-02-01
    Print ISSN: 0140-7791
    Electronic ISSN: 1365-3040
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 28 (2005), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Precipitates of insoluble inorganic salts were used to clog apoplastic pores in cell walls of the outer part of rice roots (OPR) in two rice cultivars (lowland cv. IR64 and upland cv. Azucena). Aerenchyma of two different root zones (20–50 and 50–100 mm from the apex) was perfused with 1 m m potassium ferrocyanide (K4[Fe(CN)6]) while the whole root segments were bathed in 0.5 m m copper sulphate (CuSO4) medium. In another experiment, salts were applied on opposite sides of the OPR. The copper-ferrocyanide precipitation technique resembles the famous osmotic experiments of the German botanist Wilhelm Pfeffer, in which he used them with clay diaphragms. Precipitates were observed on the side where ferrocyanide was applied, suggesting that Cu2+ and SO42– were passing the barrier including the Casparian bands of the exodermis much faster than ferrocyanide. There was a patchiness in the formation of precipitates, correlated with the maturation of the exodermis. The intensity of copper ferrocyanide staining decreased along developing rice roots. No precipitates were observed in mature parts beyond 70–80 mm from the root apex, except for sites around the emergence of secondary roots, which were fairly leaky to both water and ions. Blockage of the apoplastic pores with precipitates caused a three- to four-fold reduction of hydraulic conductivity of the OPR (LpOPR). The reflection coefficient of the OPR (σsOPR) increased in response to the blockage with precipitates. The osmotic versus diffusive water permeability ratios of the OPR (PfOPR/PdOPR) were around 600 for immature and 1200 for mature root segments. Treatment significantly affected the bulk rather than the diffusive water flow and caused a three- to five-fold reduction of the PfOPR/PdOPR ratios. Results indicated that despite the existence of an exodermis with Casparian bands, most of the water moved around cells rather than using the cell-to-cell passage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 28 (2005), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The inhibition of the hydraulic conductivity of individual cortical cells (Lp) of young roots of cucumber and figleaf gourd by low root temperature (8 °C, LRT) was measured using a cell pressure probe. When LRT was imposed, the Lp of the two species responded differently. Water permeability of cortical cells of chilling-sensitive cucumber decreased by a factor of 10, but there was only a small effect in the chilling-resistant figleaf gourd. Mechanical stresses (pulses of cell turgor pressure) resulted in a similar inhibition for both species by a factor of 6.5. When applied at LRT, abscisic acid (ABA) partially or even completely reversed the effects of chilling and mechanical stresses of both species. At the control temperature of 22 °C, 50 µm of the aquaporin (AQP) inhibitor HgCl2 acted on root cells of both species, although the effect on root cells of figleaf gourd was small. There was no effect of HgCl2, when AQPs were already closed either by LRT or by mechanical stress. The effect of mechanical stress (pressure pulses) was substantially bigger than that of HgCl2. When AQPs were closed by big pulses in the presence of 50 µm HgCl2, they could be partially re-opened in the presence of the inhibitor by applying small pulses, suggesting that there are at least two different types of channels present, which respond differently to mechanical stress or to the heavy metal. The presence of 1 µm ABA in the root medium prevented the effects of LRT and mechanical stress, namely an increase in the half-times of water exchange (Tw1/2 ∝ 1/Lp). In the absence of stresses at short Tw1/2, there was no effect of ABA. It is concluded that the responsiveness of AQPs of the two species differs in the presence of LRT but not under conditions of mechanical stress. In both cases, however, ABA has an ameliorative effect. The results suggest that the presence of ABA reduces the activation energy of changes of the conformation of AQPs, when switching between open and closed states. Mechanisms of the gating of AQP activity by LRT and mechanical stresses and the possible role of the stress hormone ABA are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...