ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (5)
Collection
Publisher
Years
Year
  • 1
  • 2
    Publication Date: 2019-07-11
    Description: About 50 kyr ago the impact of an iron meteoroid excavated Meteor Crater, Arizona, the first terrestrial structure widely recognized as a meteorite impact crater. Recent studies of ballistically dispersed impact melts from Meteor Crater indicate a compositionally unusually heterogeneous impact melt with high SiO2 and exceptionally high (10 to 25% on average) levels of projectile contamination. These are observations that must be explained by any theoretical modeling of the impact event. Simple atmospheric entry models for an iron meteorite similar to Canyon Diablo indicate that the surface impact speed should have been around 12 km/s [Melosh, personal comm.], not the 15-20 km/s generally assumed in previous impact models. This may help explaining the unusual characteristics of the impact melt at Meteor Crater. We present alternative initial estimates of the motion in the atmosphere of an iron projectile similar to Canyon Diablo, to constraint the initial conditions of the impact event that generated Meteor Crater.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 16; LPI-Contrib-1234-Pt-16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-11
    Description: Collisions of asteroids and comets with the Earth s surface are rare events that punctuate the geologic record. Due to the vastness of Earth s oceans, oceanic impacts of asteroids or comets are expected to be about 4 times more frequent than land impacts. The resulting injections of oceanic water into the upper atmosphere can have important repercussions on Earth s climate and atmospheric circulation. However, the duration and overall effect of these large injections are still unconstrained. This work addresses atmospheric injections of large amounts of water in oceanic impacts.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 16; LPI-Contrib-1234-Pt-16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-11
    Description: Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: How do scientists learn about impact cratering? , and What information do impact craters provide in understanding the evolution of a planetary surface? Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 3; LPI-Contrib-1234-Pt-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The goal of this work is to investigate the perturbation of the climate system due to large impact events. Impacts are among the most important mechanisms for the evolution, distribution, and destruction of life in the universe. However, the possible climatic effects of an impact were not seriously considered until 1980, when Louis and Walter Alvarez suggested that the profound end-Cretaceous extinction might have been caused by the impact of an asteroid or comet about 10 km in diameter. Since then, the climatic change associated with the end-Cretaceous impact has become one of the most interesting and still unresolved questions in linking the well-known Chicxulub impact event and the end- Cretaceous mass extinction. While the end-Cretaceous impact offers the best-documented case of an impact affecting the Earth's climate and biota, even smaller (and more frequent in time) impacts could introduce significant perturbations of the climate comparable, if not larger, to the largest known volcanic perturbations. We propose to study the mechanical and thermal state of the atmosphere following an impact event. This will be done by using both one-dimensional and three-dimensional climate models. When necessary, modifications of the state-of-the-art general circulation models will b e carried out. We want to use the end-Cretaceous impact event as a case study. This allows us to take advantage of the extensive modeling of this impact event that has already been carried out through a previous Exobiology grant. Furthermore, a large experimental dataset, that can be used to constrain and test our models, is associated with the end-Cretaceous mass extinction (one of the largest of the Phanerozoic) and impact event.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...