ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (3)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2008-11-06
    Description: Background Salmonella enterica serovar Enteritidis (SE) is one of the most common food-borne pathogens that cause human salmonellosis and usually results from the consumption of contaminated poultry products. The mechanism of SE resistance in chickens remains largely unknown. Previously, heterophils isolated from broilers with different genetic backgrounds (SE-resistant [line A] and -susceptible [line B]) have been shown to be important in defending against SE infections. To dissect the interplay between heterophils and SE infection, we utilized large-scale gene expression profiling. Results The results showed more differentially expressed genes were found between different lines than between infection (SE-treated) and non-infection (control) samples within line. However, the numbers of expressed immune-related genes between these two comparisons were dramatically different. More genes related to immune function were down-regulated in line B than line A. The analysis of the immune-related genes indicated that SE infection induced a stronger, up-regulated gene expression of line heterophils A than line B, and these genes include several components in the Toll-like receptor (TLR) signaling pathway, and genes involved in T-helper cell activation. Conclusion We found: (1) A divergent expression pattern of immune-related genes between lines of different genetic backgrounds. The higher expression of immune-related genes might be more beneficial to enhance host immunity in the resistant line; (2) a similar TLR regulatory network might exist in both lines, where a possible MyD88-independent pathway may participate in the regulation of host innate immunity; (3) the genes exclusively differentially expressed in line A or line B with SE infection provided strong candidates for further investigating SE resistance and susceptibility. These findings have laid the foundation for future studies of TLR pathway regulation and cellular modulation of SE infection in chickens.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-08-26
    Print ISSN: 0093-7711
    Electronic ISSN: 1432-1211
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-01-31
    Description: Background The development of microarray technology has greatly enhanced our ability to evaluate gene expression. In theory, the expression of all genes in a given organism can be monitored simultaneously. Sequencing of the chicken genome has provided the crucial information for the design of a comprehensive chicken transcriptome microarray. A long oligonucleotide microarray has been manually curated and designed by our group and manufactured using Agilent inkjet technology. This provides a flexible and powerful platform with high sensitivity and specificity for gene expression studies. Results A chicken 60-mer oligonucleotide microarray consisting of 42,034 features including the entire Marek's disease virus, two avian influenza virus (H5N2 and H5N3), and 150 chicken microRNAs has been designed and tested. In an important validation study, total RNA isolated from four major chicken tissues: cecal tonsil (C), ileum (I), liver (L), and spleen (S) were used for comparative hybridizations. More than 95% of spots had high signal noise ratio (SNR 〉 10). There were 2886, 2660, 358, 3208, 3355, and 3710 genes differentially expressed between liver and spleen, spleen and cecal tonsil, cecal tonsil and ileum, liver and cecal tonsil, liver and ileum, spleen and ileum (P 〈 10-7), respectively. There were a number of tissue-selective genes for cecal tonsil, ileum, liver, and spleen identified (95, 71, 535, and 108, respectively; P 〈 10-7). Another highlight of these data revealed that the antimicrobial peptides GAL1, GAL2, GAL6 and GAL7 were highly expressed in the spleen compared to other tissues tested. Conclusion A chicken 60-mer oligonucleotide 44K microarray was designed and validated in a comprehensive survey of gene expression in diverse tissues. The results of these tissue expression analyses have demonstrated that this microarray has high specificity and sensitivity, and will be a useful tool for chicken functional genomics. Novel data on the expression of putative tissue specific genes and antimicrobial peptides is highlighted as part of this comprehensive microarray validation study. The information for accessing and ordering this 44K chicken array can be found at http://people.tamu.edu/~hjzhou/TAMUAgilent44KArray/
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...