ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (6)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2005-12-01
    Print ISSN: 0168-1923
    Electronic ISSN: 1873-2240
    Topics: Geography , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-11-01
    Print ISSN: 0168-1923
    Electronic ISSN: 1873-2240
    Topics: Geography , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: Most land surface models used today require estimates of aerodynamic roughness length in order to characterize momentum transfer between the surface and atmosphere. The most common method of prescribing roughness is through the use of empirical look-up tables based solely on land cover class. Theoretical approaches that employ satellite-based estimates of canopy density present an attractive alternative to current look-up table approaches based on vegetation cover type that do not account for within-class variability and are oftentimes simplistic with respect to temporal variability. The current research applies Raupach s formulation of momentum aerodynamic roughness to MODIS data on a regional scale in order to estimate seasonally variable roughness and zero-plane displacement height fields using bulk land cover parameters estimated by [Jasinski, M.F., Borak, J., Crago, R., 2005. Bulk surface momentum parameters for satellite-derived vegetation fields. Agric. For. Meteorol. 133, 55-68]. Results indicate promising advances over look-up approaches with respect to characterization of vegetation roughness variability in land surface and atmospheric circulation models.
    Keywords: Earth Resources and Remote Sensing
    Type: Agricultural and Forest Meteorology (ISSN 0168-1923); Volume 135; 252-268
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: The bulk aerodynamic parameters associated with the absorption of surface momentum by vegetated landscapes are theoretically estimated within the context of Raupach's roughness sublayer formulation. The parameters include the bulk plant drag coefficient, maximum u*/U(sub h), sheltering coefficient, and canopy area density at onset of sheltering. Parameters are estimated for the four principal IGBP land cover classes within the U.S. Southern Great Plains: evergreen needleleaf forests, grasslands, croplands, and open shrublands. The estimation approach applies the Method of Moments to roughness data from several international field experiments and other published sources. The results provide the necessary land surface parameters for satellite-based estimation of momentum aerodynamic roughness length and zero-plane displacement height for seasonally variable vegetation fields employed in most terrestrial and atmospheric simulation models used today. Construction of sample displacement and roughness maps over the Southern United States using MODIS land products demonstrates the potential of this approach for regional to global applications.
    Keywords: Earth Resources and Remote Sensing
    Type: Agricultural and Forest Meteorology (ISSN 0168-1923); Volume 133; 55-68
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: Many earth science modeling applications employ continuous input data fields derived from satellite data. Environmental factors, sensor limitations and algorithmic constraints lead to data products of inherently variable quality. This necessitates interpolation of one form or another in order to produce high quality input fields free of missing data. The present research tests several interpolation techniques as applied to satellite-derived leaf area index, an important quantity in many global climate and ecological models. The study evaluates and applies a variety of interpolation techniques for the Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf-Area Index Product over the time period 2001-2006 for a region containing the conterminous United States. Results indicate that the accuracy of an individual interpolation technique depends upon the underlying land cover. Spatial interpolation provides better results in forested areas, while temporal interpolation performs more effectively over non-forest cover types. Combination of spatial and temporal approaches offers superior interpolative capabilities to any single method, and in fact, generation of continuous data fields requires a hybrid approach such as this.
    Keywords: Earth Resources and Remote Sensing
    Type: Submitted to Agricultural and Forest Meteorology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: NASA's objective for the Applied Sciences Program of the Science Mission Directorate is to expand and accelerate the realization of economic and societal benefits from Earth science, information, and technology. This objective is accomplished by using a systems approach to facilitate the incorporation of Earth observations and predictions into the decision-support tools used by partner organizations to provide essential services to society. The services include management of forest fires, coastal zones, agriculture, weather prediction, hazard mitigation, aviation safety, and homeland security. In this way, NASA's long-term research programs yield near-term, practical benefits to society. The Applied Sciences Program relies heavily on forging partnerships with other Federal agencies to accomplish its objectives. NASA chooses to partner with agencies that have existing connections with end-users, information infrastructure already in place, and decision support systems that can be enhanced by the Earth science information that NASA is uniquely poised to provide (NASA, 2004).
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0096
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...