ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
  • 2005-2009  (5)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 34 (L21601).
    Publication Date: 2018-02-15
    Description: A generalized heat function is defined for diagnosing the pathways by which heat is carried by the ocean. In contrast to previous work, our generalized heat function varies along an isentrope only in the presence of mixing. The generalized heat function is diagnosed using the Levitus global ocean data set, net northward heat transport based on the data set of Grist and Josey, and different specifications for mixing in the ocean. The separation between the heat flux carried by the shallow wind driven cells and the deep overturning circulation is clearly revealed, with up to 0.4 PW being associated with the spreading of North Atlantic Deep Water. The importance of eddy-induced mixing near the surface of the Southern Ocean is evident.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 35 . L24609.
    Publication Date: 2017-11-08
    Description: In the Gulf Stream region, eddy kinetic energy (EKE) peaks in summer while, as measured by the baroclinic eddy growth time scale, the ocean is most baroclinically unstable in late winter. We argue that the seasonally-varying Ekman pumping is unlikely to be responsible for the seasonal variation in growth time, and that the summer peak in EKE results from a reduction in dissipation in summer compared to winter.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 34 . L10609.
    Publication Date: 2018-02-15
    Description: Near-inertial energy in the ocean is thought to be redistributed by β-dispersion, whereby near-inertial waves generated at the surface by wind forcing propagate downward and equatorward. In this letter, we examine the spreading of near-inertial energy in a realistic 1/12° model of the North Atlantic driven by synoptically varying wind forcing. We find that (1) near-inertial energy is strongly influenced by the mesoscale eddy field and appears to be locally drained to the deep ocean, largely by the chimney effect associated with anticyclonic eddies, and (2) the interior of the subtropical gyre shows very low levels of near-inertial energy, contrary to expectations based on the β-dispersion effect.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 34 (L04606).
    Publication Date: 2018-02-15
    Description: The work done by the wind over the northwest Atlantic Ocean is examined using a realistic high-resolution ocean model driven by synoptic wind forcing. Two model runs are conducted with the difference only in the way the wind stress is calculated. Our results show that the effect of including ocean surface currents in the wind stress formulation is to reduce the total wind work integrated over the model domain by about 17%. The reduction is caused by a sink term in the wind work calculation associated with the presence of ocean currents. In addition, the modelled eddy kinetic energy decreases by about 10%, in response to direct mechanical damping by the surface stress. A simple scaling argument shows that the latter can be expected to be more important than bottom friction in the energy budget.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 39 (11). pp. 3040-3045.
    Publication Date: 2020-08-04
    Description: Wind-induced near-inertial energy has been believed to be an important source for generating the ocean mixing required to maintain the global meridional overturning circulation. In the present study, the near-inertial energy budget in a realistic (1)/(12)degrees model of the North Atlantic Ocean driven by synoptically varying wind forcing is examined. The authors find that nearly 70% of the wind-induced near-inertial energy at the sea surface is lost to turbulent mixing within the top 200 m and, hence, is not available to generate diapycnal mixing at greater depth. Assuming this result can be extended to the global ocean, it is estimated that the wind-induced near-inertial energy available for ocean mixing at depth is, at most, 0.1 TW. This confirms a recent suggestion that the role of wind-induced near-inertial energy in sustaining the global overturning circulation might have been overemphasized.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...