ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • 2005-2009  (2)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2019-07-11
    Description: Understanding the behaviour of siderophile elements during cooling of iron meteorites can lead to insight into the general thermal histories of the meteorites as well as their respective parent bodies. Traditionally trace element analyses in meteorites have been done using techniques that only measure the average concentration in each phase. With these methods, all of the spatial information with respect to the distribution of an element within one phase is lost. Measuring concentration profiles of trace elements in meteorites is now possible, with the advent of high-resolution analytical techniques such as laser ablation, inductively coupled plasma mass spectrometry (LA-ICP-MS) with spatial resolution 〈20 microns. [e.g. 1,2] and secondary ion mass spectrometry [3]. These profiles can give more insight into both the partitioning and diffusive behavior of siderophile elements in metal systems relevant to iron meteorites, as well as parent body cooling rates.
    Keywords: Geophysics
    Type: Lunar and Planetary Science XXXVI, Part 21; LPI-Contrib-1234-Pt-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 7 (11). Q11004.
    Publication Date: 2019-06-17
    Description: The Sr/Ca ratio of biogenic carbonate is widely used as a proxy for paleotemperature. This application is supported by empirical calibrations of Sr/Ca as a function of temperature, but it is also known that Sr uptake in calcite gauged by KdSr = equation image is affected by other variables, including bulk precipitation rate (KdSr increases with increasing precipitation rate). There are no data from controlled experiments specifically addressing the effect of radial growth rate of individual crystals on KdSr. For this reason, we conducted two series of experiments to explore Sr partitioning at varying growth rates: (1) growth from a CaCl2–NH4Cl–SrCl2 solution by diffusion of CO2 from an ammonium carbonate source (“drift” experiments) and (2) “drip” precipitation of calcite on a substrate, using a steady flow of CaCl2–SrCl2 and Na2CO3 solutions, mixed just before passage through a tube and dripped onto a glass slide precoated with calcite (“cave‐type” experiments). The growth rates of individual crystals were determined by periodic monitoring of crystal size through time or, roughly, by comparison of the final size with the duration of the experiment. Electron microprobe analyses across sectioned crystals grown in the drift experiments show that the concentration of Sr is high in the center (where radial growth rates are highest) and decreases systematically toward the edge. The center‐to‐edge drop in Sr concentration is a consequence of the slowing radial growth rate as individual crystals become larger. In general, high crystal growth rate (V) enhances Sr uptake in calcite due to a type of kinetic disequilibrium we refer to as “growth entrapment.” The apparent KdSr ranges from 0.12 to 0.35 as V increases from 0.01 nm/s to 1 μm/s at 25°C.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...