ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • 2005-2009  (2)
Collection
Years
Year
  • 1
    Publication Date: 2019-07-13
    Description: Pollen and seeds share a developmental sequence characterized by intense metabolic activity during reserve deposition before drying to a cryptobiotic form. Neither pollen nor seed development has been well studied in the absence of gravity, despite the importance of these structures in supporting future long-duration manned habitation away from Earth. Using immature seeds (3-15 d postpollination) of Brassica rapa L. cv. Astroplants produced on the STS-87 flight of the space shuttle Columbia, we compared the progress of storage reserve deposition in cotyledon cells during early stages of seed development. Brassica pollen development was studied in flowers produced on plants grown entirely in microgravity on the Mir space station and fixed while on orbit. Cytochemical localization of storage reserves showed differences in starch accumulation between spaceflight and ground control plants in interior layers of the developing seed coat as early as 9 d after pollination. At this age, the embryo is in the cotyledon elongation stage, and there are numerous starch grains in the cotyledon cells in both flight and ground control seeds. In the spaceflight seeds, starch was retained after this stage, while starch grains decreased in size in the ground control seeds. Large and well-developed protein bodies were observed in cotyledon cells of ground control seeds at 15 d postpollination, but their development was delayed in the seeds produced during spaceflight. Like the developing cotyledonary tissues, cells of the anther wall and filaments from the spaceflight plants contained numerous large starch grains, while these were rarely seen in the ground controls. The tapetum remained swollen and persisted to a later developmental stage in the spaceflight plants than in the ground controls, even though most pollen grains appeared normal. These developmental markers indicate that Brassica seeds and pollen produced in microgravity were physiologically younger than those produced in 1 g. We hypothesize that microgravity limits mixing of the gaseous microenvironments inside the closed tissues and that the resulting gas composition surrounding the seeds and pollen retards their development.
    Keywords: Life Sciences (General)
    Type: International journal of plant sciences (ISSN 1058-5893); 166; 1; 85-96
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-11
    Description: Brassica rapa L. cv. 'Astroplants' were grown on the International Space Station during April - June 2002 in the Biomass Production System. Plants were manually pollinated and were maturing seeds when they were harvested for preservation in flight by fixation or freezing. Overall growth and development were comparable between flight and ground control plants. Chlorophyll and carbohydrate content of the leaves were the same in the two treatments. Although comparable numbers of seeds were produced inside the seed pods, the developing seeds from the spaceflight treatment had only half of the dry weight of the ground controls and had altered storage components. Glucosinolate content of the stem tissue was also determined. The concentration of 3-butenyl-glucosinolate was on average 75% greater in the spaceflight samples than in the ground control. The results demonstrate how the spaceflight environment influences nutritional and flavor characteristics of a potential crop for use in a Biological Life Support System.
    Keywords: Life Sciences (General)
    Type: Journal of Gravitational Physiology, Volume 12, Number 1; P185-P186
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...