ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • 2005-2009  (2)
Collection
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2019-07-19
    Description: In the field of vibration testing, the interaction between the structure being tested and the instrumentation hardware used to perform the test is a critical issue. This is particularly true when testing massive structures (e.g. satellites), because due to physical design and manufacturing limits, the dynamics of the testing facility often couples with the test specimen one in the frequency range of interest. A further issue in this field is the standard use of a closed loop real-time vibration control scheme, which could potentially shift poles and change damping of the aforementioned coupled system. Virtual shaker testing is a novel approach to deal with these issues. It means performing a simulation which closely represents the real vibration test on the specific facility by taking into account all parameters which might impact the dynamic behavior of the specimen. In this paper, such a virtual shaker testing approach is developed. It consists of the following components: (1) Either a physical-based or an equation-based coupled electro-mechanical lumped parameter shaker model is created. The model parameters are obtained from manufacturer's specifications or by carrying out some dedicated experiments; (2) Existing real-time vibration control algorithm are ported to the virtual simulation environment; and (3) A structural model of the test object is created and after defining proper interface conditions structural modes are computed by means of the well-established Craig-Bampton CMS technique. At this stage, a virtual shaker test has been run, by coupling the three described models (shaker, control loop, structure) in a co-simulation routine. Numerical results have eventually been correlated with experimental ones in order to assess the robustness of the proposed methodology.
    Keywords: Structural Mechanics
    Type: 25th Space Simulation Conference. Environmental Testing: The Earth-Space Connection; 24; NASA/CP-2008-214164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-22
    Description: We have compared 14 different sediment incubation chambers, most of them were used on bottom landers. Measurements of mixing time, pressure gradients at the bottom and Diffusive Boundary Layer thickness (DBL) were used to describe the hydrodynamic properties of the chambers and sediment–water solute fluxes of silicate (34 replicates) and oxygen (23 replicates) during three subsequently repeated incubation experiments on a homogenized, macrofauna-free sediment. The silicate fluxes ranged from 0.24 to 1.01 mmol m−2 day−1 and the oxygen fluxes from 9.3 to 22.6 mmol m−2 day−1. There was no statistically significant correlation between measured fluxes and the chamber design or between measured fluxes and hydrodynamic settings suggesting that type of chamber was not important in these flux measurements. For verification of sediment homogeneity, 61 samples of meiofauna were taken and identified to major taxa. In addition, 13 sediment cores were collected, sectioned into 5–10-mm slices and separated into pore water and solid phase. The pore water profiles of dissolved silicate were used to calculate diffusive fluxes of silicate. These fluxes ranged from 0.63 to 0.87 mmol m−2 day−1. All of the collected sediment parameters indicated that the sediment homogenization process had been satisfactorily accomplished. Hydrodynamic variations inside and between chambers are a reflection of the chamber design and the stirring device. In general, pump stirrers with diffusers give a more even distribution of bottom currents and DBL thicknesses than paddle wheel-type stirrers. Most chambers display no or low static differential pressures when the water is mixed at rates of normal use. Consequently, there is a low risk of creating stirrer induced pressure effects on the measured fluxes. Centrally placed stirrers are preferable to off-center placed stirrers which are more difficult to map and do not seem to give any hydrodynamic advantages. A vertically rotating stirrer gives about five times lower static differential pressures at the same stirring speed as the same stirrer mounted horizontally. If the aim is to simulate or mimic resuspension at high flow velocities, it cannot be satisfactorily done in a chamber using a horizontal (standing) rotating impeller (as is the case for most chambers in use) due to the creation of unnatural conditions, i.e. large static differential pressures and pre-mature resuspension at certain locations in the chamber.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...