ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (36)
  • 2005-2009  (36)
Collection
  • Articles  (36)
Years
Year
Journal
Topic
  • 1
    Publication Date: 2007-05-30
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-09-01
    Print ISSN: 0079-6611
    Electronic ISSN: 1873-4472
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-10-01
    Print ISSN: 0079-6611
    Electronic ISSN: 1873-4472
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-08-01
    Description: A simple linearized transport model of anomalous Southern Ocean sea surface temperature (SST) is studied to determine whether it can sustain anomalies of realistic amplitudes under a physically based stochastic forcing. As noted in previous studies, eigenmodes of this system with zonal wavenumbers 2 and 3 share key propagation characteristics with the SST anomalies associated with the Antarctic Circumpolar Wave (ACW). The system is solved on a grid that follows the path of the Antarctic Circumpolar Current (ACC) and is forced by a stochastic heat flux. The forcing is white in space and time and represents the advection of the mean SST gradient by high-frequency variations in the cross-ACC velocity, due to mesoscale eddy variability. The magnitude of the stochastic forcing is determined from a global eddy-permitting ocean model. Anomalous ocean surface velocity variability (8 cm s−1) coupled to a mean cross-ACC SST gradient of 0.8°C (°latitude)−1 sustains anomalous interannual SST variability at low wavenumbers and amplitudes of the order of 1°C, consistent with those associated with the ACW. In the long-term mean, variance is broadly spread among low wavenumbers, in contrast to the dominance of one or two zonal wavenumbers in the ACW observations. It is found, however, that the model produces single dominant wavenumbers over individual periods of decades, suggesting that the apparent unimodal nature of the ACW may be an artifact of the short observational record used to infer it. Alternatively, it is shown that a nonisotropic forcing may also result in a stronger preference for particular zonal wavenumbers. It is shown that if the atmosphere at mid to high southern latitudes has an equivalent barotropic response to heating, then the resulting sea level pressure anomalies reproduce the phase relationship of the observed ACW. These results are consistent with the notion that a simple stochastically forced advection of SST anomalies can explain SST variability associated with the ACW to leading order.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-05-15
    Description: Interannual rainfall extremes over southwest Western Australia (SWWA) are examined using observations, reanalysis data, and a long-term natural integration of the global coupled climate system. The authors reveal a characteristic dipole pattern of Indian Ocean sea surface temperature (SST) anomalies during extreme rainfall years, remarkably consistent between the reanalysis fields and the coupled climate model but different from most previous definitions of SST dipoles in the region. In particular, the dipole exhibits peak amplitudes in the eastern Indian Ocean adjacent to the west coast of Australia. During dry years, anomalously cool waters appear in the tropical/subtropical eastern Indian Ocean, adjacent to a region of unusually warm water in the subtropics off SWWA. This dipole of anomalous SST seesaws in sign between dry and wet years and appears to occur in phase with a large-scale reorganization of winds over the tropical/subtropical Indian Ocean. The wind field alters SST via anomalous Ekman transport in the tropical Indian Ocean and via anomalous air–sea heat fluxes in the subtropics. The winds also change the large-scale advection of moisture onto the SWWA coast. At the basin scale, the anomalous wind field can be interpreted as an acceleration (deceleration) of the Indian Ocean climatological mean anticyclone during dry (wet) years. In addition, dry (wet) years see a strengthening (weakening) and coinciding southward (northward) shift of the subpolar westerlies, which results in a similar southward (northward) shift of the rain-bearing fronts associated with the subpolar front. A link is also noted between extreme rainfall years and the Indian Ocean Dipole (IOD). Namely, in some years the IOD acts to reinforce the eastern tropical pole of SST described above, and to strengthen wind anomalies along the northern flank of the Indian Ocean anticyclone. In this manner, both tropical and extratropical processes in the Indian Ocean generate SST and wind anomalies off SWWA, which lead to moisture transport and rainfall extremes in the region. An analysis of the seasonal evolution of the climate extremes reveals a progressive amplification of anomalies in SST and atmospheric circulation toward a wintertime maximum, coinciding with the season of highest SWWA rainfall. The anomalies in SST can appear as early as the summertime months, however, which may have important implications for predictability of SWWA rainfall extremes.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-11-01
    Description: Interannual extremes in New Zealand rainfall and their modulation by modes of Southern Hemisphere climate variability are examined in observations and a coupled climate model. North Island extreme dry (wet) years are characterized by locally increased (reduced) sea level pressure (SLP), cold (warm) sea surface temperature (SST) anomalies in the southern Tasman Sea and to the north of the island, and coinciding reduced (enhanced) evaporation upstream of the mean southwesterly airflow. During extreme dry (wet) years in South Island precipitation, an enhanced (reduced) meridional SLP gradient occurs, with circumpolar strengthened (weakened) subpolar westerlies and an easterly (westerly) anomaly in zonal wind in the subtropics. As a result, via Ekman transport, anomalously cold (warm) SST appears under the subpolar westerlies, while anomalies of the opposite sign occur farther north. The phase and magnitude of the resulting SST and evaporation anomalies cannot account for the rainfall extremes over the South Island, suggesting a purely atmospheric mode of variability as the driving factor, in this case the Southern Annular Mode (SAM). New Zealand rainfall variability is predominantly modulated by two Southern Hemisphere climate modes, namely, the El Niño–Southern Oscillation (ENSO) and the SAM, with a latitudinal gradation in influence of the respective phenomena, and a notable interaction with orographic features. While this heterogeneity is apparent both latitudinally and as a result of orographic effects, climate modes can force local rainfall anomalies with considerable variations across both islands. North Island precipitation is for the most part regulated by both local air–sea heat fluxes and circulation changes associated with the tropical ENSO mode. In contrast, for the South Island the influence of the large-scale general atmospheric circulation dominates, especially via the strength and position of the subpolar westerlies, which are modulated by the extratropical SAM.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-12-01
    Description: A previous study by Mikolajewicz suggested that the wind stress feedback stabilizes the Atlantic thermohaline circulation. This result was obtained under modern climate conditions, for which the presence of the massive continental ice sheets characteristic of glacial times is missing. Here a coupled ocean–atmosphere–sea ice model of intermediate complexity, set up in an idealized spherical sector geometry of the Atlantic basin, is used to show that, under glacial climate conditions, wind stress feedback actually reduces the stability of the meridional overturning circulation (MOC). The analysis reveals that the influence of the wind stress feedback on the glacial MOC response to an external source of freshwater applied at high northern latitudes is controlled by the following two distinct processes: 1) the interactions between the wind field and the sea ice export in the Northern Hemisphere (NH), and 2) the northward Ekman transport in the tropics and upward Ekman pumping in the core of the NH subpolar gyre. The former dominates the response of the coupled system; it delays the recovery of the MOC, and in some cases even stabilizes collapsed MOC states achieved during the hosing period. The latter plays a minor role and mitigates the impact of the former process by reducing the upper-ocean freshening in deep-water formation regions. Hence, the wind stress feedback delays the recovery of the glacial MOC, which is the opposite of what occurs under modern climate conditions. Close to the critical transition threshold beyond which the circulation collapses, the glacial MOC appears to be very sensitive to changes in surface wind stress forcing and exhibits, in the aftermath of the freshwater pulse, a nonlinear dependence upon the wind stress feedback magnitude: a complete and irreversible MOC shutdown occurs only for intermediate wind stress feedback magnitudes. This behavior results from the competitive effects of processes 1 and 2 on the midlatitude upper-ocean salinity during the shutdown phase of the MOC. The mechanisms presented here may be relevant to the large meltwater pulses that punctuated the last glacial period.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-11-01
    Description: This study explores the impact of meridional sea surface temperature (SST) gradients across the eastern Indian Ocean on interannual variations in Australian precipitation. Atmospheric general circulation model (AGCM) experiments are conducted in which the sign and magnitude of eastern Indian Ocean SST gradients are perturbed. This results in significant rainfall changes for western and southeastern Australia. A reduction (increase) in the meridional SST gradient drives a corresponding response in the atmospheric thickness gradients and results in anomalous dry (wet) conditions over Australia. During simulated wet years, this seems to be due to westerly anomalies in the thermal wind over Australia and anomalous onshore moisture advection, with a suggestion that the opposite occurs during dry conditions. Thus, an asymmetry is seen in the magnitude of the forced circulation and precipitation response between the dry and wet simulations. To assess the relative contribution of the SST anomalies making up the meridional gradient, the SST pattern is decomposed into its constituent “poles,” that is, the eastern tropical pole off the northwest shelf of Australia versus the southern pole in the central subtropical Indian Ocean. Overall, the simulated Australian rainfall response is linear with regard to the sign and magnitude of the eastern Indian Ocean SST gradient. The tropical eastern pole has a larger impact on the atmospheric circulation and Australian precipitation changes relative to the southern subtropical pole. However, there is clear evidence of the importance of the southern pole in enhancing the Australian rainfall response, when occurring in conjunction with but of opposite sign to the eastern tropical pole. The observed relationship between the meridional SST gradient in the eastern Indian Ocean and rainfall over western and southeastern Australia is also analyzed for the period 1970–2005. The observed relationship is found to be consistent with the AGCM results.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-10-01
    Description: The potential impact of Indian Ocean sea surface temperature (SST) anomalies in modulating midlatitude precipitation across southern and western regions of Australia is assessed in a series of atmospheric general circulation model (AGCM) simulations. Two sets of AGCM integrations forced with a seasonally evolving characteristic dipole pattern in Indian Ocean SST consistent with observed “dry year” (PDRY) and “wet year” (PWET) signatures are shown to induce precipitation changes across western regions of Australia. Over Western Australia, a significant shift occurs in the winter and annual rainfall frequency with the distribution becoming skewed toward less (more) rainfall for the PDRY (PWET) SST pattern. For southwest Western Australia (SWWA), this shift primarily is due to the large-scale stable precipitation. Convective precipitation actually increases in the PDRY case over SWWA forced by local positive SST anomalies. A mechanism for the large-scale rainfall shifts is proposed, by which the SST anomalies induce a reorganization of the large-scale atmospheric circulation across the Indian Ocean basin. Thickness (1000–500 hPa) anomalies develop in the atmosphere mirroring the sign and position of the underlying SST anomalies. This leads to a weakening (strengthening) of the meridional thickness gradient and the subtropical jet during the austral winter in PDRY (PWET). The subsequent easterly offshore (westerly onshore) anomaly in the thermal wind over southern regions of Australia, along with a decrease (increase) in baroclinicity, results in the lower (higher) levels of large-scale stable precipitation. Variations in the vertical thermal structure of the atmosphere overlying the SST anomalies favor localized increased convective activity in PDRY because of differential temperature lapse rates. In contrast, enhanced widespread ascent of moist air masses associated with frontal movement in PWET accounts for a significant increase in rainfall in that ensemble set.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-07-01
    Description: The stability of Antarctic Bottom Water (AABW) to freshwater (FW) perturbations is investigated in a coupled climate model of intermediate complexity. It is found that AABW is stable to surface freshwater fluxes greater in volume and rate to those that permanently “shut down” North Atlantic Deep Water (NADW). Although AABW weakens during FW forcing, it fully recovers within 50 yr of termination of FW input. This is due in part to a concurrent deep warming during AABW suppression that acts to eventually destabilize the water column. In addition, the prevailing upwelling of Circumpolar Deep Water and northward Ekman transport across the Antarctic Circumpolar Current, regulated by the subpolar westerly winds, limits the accumulation of FW at high latitudes and provides a mechanism for resalinizing the surface after the FW forcing has ceased. Enhanced sea ice production in the cooler AABW suppressed state also aids in the resalinization of the surface after FW forcing is stopped. Convection then restarts with AABW properties only slightly colder and fresher compared to the unperturbed control climate state. Further experiments with larger FW perturbations and very slow application rates (0.2 Sv/1000 yr) (1 Sv ≡ 106 m3 s−1) confirm the lack of multiple steady states of AABW in the model. This contrasts with the North Atlantic, wherein classical hysteresis behavior is obtained with similar forcing. The climate response to reduced AABW production is also investigated. During peak FW forcing, Antarctic surface sea and air temperatures decrease by a maximum of 2.5° and 2.2°C, respectively. This is of a similar magnitude to the corresponding response in the North Atlantic. Although in the final steady state, the AABW experiment returns to the original control climate, whereas the North Atlantic case transitions to a different steady state characterized by substantial regional cooling (up to 6.0°C surface air temperature).
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...