ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
  • Spacecraft Propulsion and Power  (4)
  • 2005-2009  (4)
  • 1
    Publication Date: 2019-07-13
    Description: In July 2004, a 10-meter solar sail structure developed by L Garde, Inc. was tested in vacuum at the NASA Glenn 30-meter Plum Brook Space Power Facility in Sandusky, Ohio. The three main objections of the test were to demonstrate unattended deployment from a stowed configuration, to measure the deployed shape of the sail at both ambient and cryogenic room temperatures, and to measure the deployed structural dynamic characteristics (vibration modes). This paper summarizes the work conducted to fulfill the second test objective. The deployed shape was measured photogrammetrically in vacuum conditions with four 2-megapixel digital video cameras contained in custom made pressurized canisters. The canisters included high-intensity LED ring lights to illuminate a grid of retroreflective targets distributed on the solar sail. The test results closely matched pre-test photogrammetry numerical simulations and compare well with ABAQUS finite-element model predictions.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Paper 2005-1889 , 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 18, 2005 - Apr 21, 2005; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.
    Keywords: Spacecraft Propulsion and Power
    Type: M09-0140 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 09, 2006 - Jul 12, 2006; Sacramento, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: In support of the Exploration Vision for returning to the Moon and beyond, NASA and its partners are developing and testing critical cryogenic fluid propellant technologies that will meet the need for high performance propellants on long-term missions. Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of tank thermal and pressure control, fluid acquisition, mass gauging, and fluid transfer. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and required on-orbit margins, and simplify vehicle operations. The Propulsion and Cryogenic Advanced Development (PCAD) Project is performing experimental and analytical evaluation of several areas within Cryogenic Fluid Management (CFM) to enable NASA's Exploration Vision. This paper discusses the status of the PCAD CFM technology focus areas relative to the anticipated CFM requirements to enable execution of the Vision for Space Exploration.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2007-214810 , AIAA Paper-2007-343 , 45th AIAA Aerospace Sciences Meeting and Exhibit; Jan 08, 2007 - Jan 11, 2007; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: Solar sailing is a promising, future in-space propulsion method that uses the small force of reflecting sunlight to accelerate a large, reflective membrane without expendable propellants. One of two solar sail configurations under development by NASA is a striped net approach by L'Garde, Inc. This design uses four inflatably deployed, lightweight booms supporting a network of thin strings onto which four quadrants of ultrathin aluminized membranes are attached. The NASA Langley Research Center (LaRC) provided both experimental and analytical support to L'Garde for validating the structural characteristics of this unique, ultralightweight spacecraft concept. One of LaRC's responsibilities was to develop and apply photogrammetric methods to measure sail shape. The deployed shape provides important information for validating the accuracy of finite-element modeling techniques. Photogrammetry is the science and art of calculating 3D coordinates of targets or other distinguishing features on structures using images. A minimum of two camera views of each target is required for 3D determination, but having four or more camera views is preferable for improved reliability and accuracy. Using retroreflective circular targets typically provides the highest measurement accuracy and automation. References 3 and 4 provide details of photogrammetry technology, and reference 5 discusses previous experiences with photogrammetry for measuring gossamer spacecraft structures such as solar sails. This paper discusses the experimental techniques used to measure a L Garde 10-m solar sail test in vacuum with photogrammetry. The test was conducted at the NASA-Glenn Space Power Facility (SPF) located at Plum Brook Station in Sandusky, Ohio. The SPF is the largest vacuum chamber in the United States, measuring 30 m in diameter by 37 m in height. High vacuum levels (10(exp -6) torr) can be maintained inside the chamber, and cold environments (-195 C) are possible using variable-geometry cryogenic cold walls. This test used a vacuum level of approximately 1 torr (sufficient for structural static/dynamic characterization) and instead of using the cryogenic cold walls, used local LN2 cold plates underneath each of the four cold-rigidizable solar sail booms instead.
    Keywords: Spacecraft Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...