ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: The Atlantic Long-Term Oceanogrphic Mooring (ALTOMOOR) has been maintained offshore Bermuda since 1993 as a testbed for the evaluation of new data telemetry technologies and new oceanographic instrumentation. It is currently a joint project between the Woods Hole Oceanographic Institution and the University of Southern California This report documents the WHOI contributions which have focused on the development of new data telemetry methods and new mooring technology. Details of the instrumentation evaluations will be published separately. A new inductively-coupled telemetry technology for ocean moorings has been developed and tested on ALTOMOOR. The inductive link uses standard, plastic-jacketed mooring wire as the transmission path for data generated at the individual instruments installed on the mooring. The signals are inductively linked to the mooring wire via toroids clamped around the wire, thus avoiding the need for multiconductor electromechanical cables terminated at each instrument. Seawater provides the electrical return path. The inductive modems send and receive data at 1200b/s. A controller in the surface buoy collects data from each of the subsurface instruments and forwards the data to shore by traditional satellite telemetry (Argos) and by short range radio using a nearby ship as a store and forward node. The buoy-to-ship link operates over about 2 km at 10kBytes/sec. When the ship docks, data are offloaded automatically to a computer on shore which can be accessed via the Internet.
    Description: Funding was provided by the Office of Naval Research through Contract Nos. N000-14-94-10346 and N000-14-90-J-1719.
    Keywords: Mooring technology ; Data telemetry ; Inductive modem
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 7032929 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-08-11
    Description: Na+/H+ antiporters are central to cellular salt and pH homeostasis. The structure of Escherichia coli NhaA was recently determined, but its mechanisms of transport and pH regulation remain elusive. We performed molecular dynamics simulations of NhaA that, with existing experimental data, enabled us to propose an atomically detailed model of antiporter function. Three conserved aspartates are key to our proposed mechanism: Asp164 (D164) is the Na+-binding site, D163 controls the alternating accessibility of this binding site to the cytoplasm or periplasm, and D133 is crucial for pH regulation. Consistent with experimental stoichiometry, two protons are required to transport a single Na+ ion: D163 protonates to reveal the Na+-binding site to the periplasm, and subsequent protonation of D164 releases Na+. Additional mutagenesis experiments further validated the model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arkin, Isaiah T -- Xu, Huafeng -- Jensen, Morten O -- Arbely, Eyal -- Bennett, Estelle R -- Bowers, Kevin J -- Chow, Edmond -- Dror, Ron O -- Eastwood, Michael P -- Flitman-Tene, Ravenna -- Gregersen, Brent A -- Klepeis, John L -- Kolossvary, Istvan -- Shan, Yibing -- Shaw, David E -- New York, N.Y. -- Science. 2007 Aug 10;317(5839):799-803.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉D. E. Shaw Research, New York, NY 10036, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17690293" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid/metabolism ; Binding Sites ; Computer Simulation ; Crystallization ; Cytoplasm/metabolism ; Escherichia coli/growth & development/*metabolism ; Escherichia coli Proteins/*chemistry/*metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Ion Transport ; *Models, Biological ; Models, Molecular ; Mutagenesis ; Periplasm/metabolism ; Protein Conformation ; Protein Structure, Secondary ; *Protons ; Sodium/*metabolism ; Sodium-Hydrogen Antiporter/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the JPL missions that enabling Earth Sciences, past, present and future. Included is a list of the National Academy of Sciences Space Studies Board of the recommended missions that are of interest to JPL.
    Keywords: Geosciences (General)
    Type: Japan Aerospace Exploration Agency (JAXA); Jun 15, 2007; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...