ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-21
    Description: Earthquake Early Warning Systems (EEWS), based on real-time prediction of ground motion or structural response measures, may play a role in reducing vulnerability and/or exposition of buildings and lifelines. In fact, recently seismologists developed efficient methods for rapid estimation of event features by means of limited information of the P-waves. Then, when an event is occurring, probabilistic distributions of magnitude and source-to-site distance are available and the prediction of the ground motion at the site, conditioned to the seismic network measures, may be performed in analogy with the Probabilistic Seismic Hazard Analysis (PSHA). Consequently the structural performance may be obtained by the Probabilistic Seismic Demand Analysis (PSDA), and used for real-time risk management purposes. However, such prediction is performed in very uncertain conditions which have to be taken into proper account to limit false and missed alarms. In the present study, real-time risk analysis for early warning purposes is discussed. The magnitude estimation is performed via the Bayesian approach, while the earthquake localization is based on the Voronoi cells. To test the procedure it was applied, by simulation, to the EEWS under development in the Campanian region (southern Italy). The results lead to the conclusion that the PSHA, conditioned to the EEWS, correctly predicts the hazard at the site and that the false/missed alarm probabilities may be controlled by set up of an appropriate decisional rule and alarm threshold.
    Description: Published
    Description: 867–885
    Description: open
    Keywords: Early warning ; Hazard ; Real-time ; Risk ; False alarm ; Missed alarm ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3232509 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In the framework of an ongoing project financed by the Campania Region, a prototype system for seismic early and post-event warning is being developed and tested, based on a dense, wide dynamic seismic network (ISNet) and under installation in the Apennine belt region. This paper reports the characteristics of the seismic network, focussing on the required technological innovation of the different seismic network components (data-logger, sensors and data communication). To ensure a highly dynamic recording range, each station is equipped with two types of sensors: a strong-motion accelerometer and a velocimeter. Data acquisition at the seismic stations is performed using Osiris-6 model data-loggers made by Agecodagis. Each station is supplied with two (120 W) solar panels and two 130 Ah gel cell batteries, ensuring 72-h autonomy for the seismic and radio communication equipment. The site is also equipped with a GSM/GPRS programmable control/alarm system connected to several environmental sensors (door forcing, solar panel controller, battery, fire, etc) and through which the site status is known in real time. The data are stored locally on the hard-disk and, at the same time, continuously transmitted by the SeedLink protocol to local acquisition/analysis nodes (Local Control Center) via Wireless LAN bridge. At each LCC site runs a linux Earthworm system which stores and manages the acquired data stream. The real-time analysis system will perform event detection and localization based on triggers coming from data-loggers and parametric information coming from the other LCCs. Once an event is detected, the system will performs automatic magnitude and focal mechanism estimations. In the immediate post-event period, the RISSC performs shaking map calculations using parameters from the LCCs and/or data from the event database. The recorded earthquake data are stored into an event database, to be available for distribution and visualization for further off-line analyses. The seismic network will be completed in two stages: • Deployment of 30 seismic stations along the southern Apennine chain (to date almost completed) • Setting up a carrier-class radio communication system for fast and reliable data transmission, and installation of 10 additional seismic stations.
    Description: Published
    Description: 325 - 341
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: Monitoring Infrastructure ; Early-warning Applications ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In the recent years, two Italian research projects have been devoted to the simulation of ground shaking scenarios in different areas. A large part of the activities has been performed in the Umbria region and was in particular related to the 1997 Colfiorito earthquake. In general the statistical-deterministic approach was adopted for evaluating the scenarios for strong motion parameters (peak values, spectral ordinates, signal integral quantities, and so on) associated with the occurrence of a characteristic earthquake on a given fault. This approach is based on the realistic occurrence of a single earthquake related to the fracture of an a priori well identified active fault. According to the characteristic earthquake model, an earthquake rupture can repeatedly occurs along the same fault (or fault system) with an almost constant geometry, mechanism and seismic moment, these parameters being mainly related to the direction and intensity of the large scale tectonic stress regime. These ideas are supported by numerous paleoseismic studies of active faults in different tectonic environments [e.g., Pantosti and Valensise, 1990]. On the other hand, each faulting process may not repeat the same style of nucleation, propagation and arrest during successive rupture episodes occurring along a given fault zone, depending these characteristics on the pre-fracturing conditions of rock strength and/or yielding stress along the fault zone. It is therefore assumed that the large scale source characteristics (i.e., fault size and position, focal mechanism and seismic moment) are a priori known as the result of previous geological, geophysical and historical seismicity investigations. The variability of the rupture process is expected to produce variable strong ground motions at the earth surface, depending on the distribution of the kinematic parameters (final slip distribution, rupture velocity, slip duration …) along the faulting surface. In order to account for the possible variation of the source process from one rupture event to another, a large number of synthetic seismograms should be computed for different (and possible) rupture histories occurring along the characteristic fault selected, so to provide a representative set of strong motion records to be used for hazard estimation. By this strategy, the massive computation of synthetics for different possible rupture models does not provide a single earthquake scenario (as for the standard deterministic approach) but a set of possible scenarios whose variability substantially reflects the heterogeneity of the source process. The advantage of this approach is that the variability of the selected strong ground motion parameter at a given site can be described by the statistical quantities inferred from the large number of simulations available. The earthquake scenario can then be represented, for example, by a couple of maps, one describing the spatial distribution of the mean value of the considered ground motion parameter and the other representing the associated variability for example in terms of standard deviation.
    Description: Published
    Description: Roma, Università degli Studi Roma TRE
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: Colfiorito-earthquake ; shaking scenarios ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...