ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astronomy  (2)
  • 2005-2009  (2)
  • 1
    Publication Date: 2019-08-26
    Description: Infrared photometry and spectroscopy covering a time span of a quarter-century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows with embedded Herbig-Haro (HH) objects. HD 163296 was found to be relatively quiescent photometrically in its inner disk region, with the exception of a major increase in emitted flux in a broad wavelength region centered near 3 micron in 2002. In contrast, HD 31648 has exhibited sporadic changes in the entire 3-13 micron region throughout this span of time. In both stars, the changes in the 1-5 micron flux indicate structural changes in the region of the disk near the dust sublimation zone, possibly causing its distance from the star to vary with time. Repeated thermal cycling through this region will result in the preferential survival of large grains, and an increase in the degree of crystallinity. The variability observed in these objects has important consequences for the interpretation of other types of observations. For example, source variability will compromise models based on interferometry measurements unless the interferometry observations are accompanied by nearly simultaneous photometric data.
    Keywords: Astronomy
    Type: The Astrophysical Journal; 678; 1070-1078
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-26
    Description: The dust sublimation zone (DSZ) is the region of pre-main sequence (PMS) disks where dust grains most easily anneal, sublime, and condense out of the gas. Because of this, it is a location where crystalline material may be enhanced and redistributed throughout the rest of the disk. A decade-long program to monitor the thermal emission of the grains located in this region demonstrates that large changes in emitted flux occur in many systems. Changes in the thermal emission between 3 and 13.5 microns were observed in HD 31648 (MWC 480), HD 163296 (MWC 275), and DG Tau. This emission is consistent with it being produced at the DSZ, where the transition from a disk of gas to one of gas+dust occurs. In the case of DG Tau, the outbursts were accompanied by increased emission on the 10 micron silicate band on one occasion, while on another occasion it went into absorption. This requires lofting of the material above the disk into the line of sight. Such changes will affect the determination of the inner disk structure obtained through interferometry measurements, and this has been confirmed in the case of HD 163296. Cyclic variations in the heating of the DSZ will lead to the annealing of large grains, the sublimation of smaller grains, possibly followed by re-condensation as the zone enters a cooling phase. Lofting of dust above the disk plane, and outward acceleration by stellar winds and radiation pressure, can re-distribute the processed material to cooler regions of the disk, where cometesimals form. This processing is consistent with the detection of the preferential concentration of large crystalline grains in the inner few AU of PMS disks using interferometric spectroscopy with the VLTI.
    Keywords: Astronomy
    Type: 39th Annual DPS meeting; Oct 07, 2007 - Oct 12, 2007; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...