ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-07-29
    Description: Influenza A virus is a major human and animal pathogen with the potential to cause catastrophic loss of life. The virus reproduces rapidly, mutates frequently and occasionally crosses species barriers. The recent emergence in Asia of avian influenza related to highly pathogenic forms of the human virus has highlighted the urgent need for new effective treatments. Here we demonstrate the importance to viral replication of a subunit interface in the viral RNA polymerase, thereby providing a new set of potential drug binding sites entirely independent of surface antigen type. No current medication targets this heterotrimeric polymerase complex. All three subunits, PB1, PB2 and PA, are required for both transcription and replication. PB1 carries the polymerase active site, PB2 includes the capped-RNA recognition domain, and PA is involved in assembly of the functional complex, but so far very little structural information has been reported for any of them. We describe the crystal structure of a large fragment of one subunit (PA) of influenza A RNA polymerase bound to a fragment of another subunit (PB1). The carboxy-terminal domain of PA forms a novel fold, and forms a deep, highly hydrophobic groove into which the amino-terminal residues of PB1 can fit by forming a 3(10) helix.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Obayashi, Eiji -- Yoshida, Hisashi -- Kawai, Fumihiro -- Shibayama, Naoya -- Kawaguchi, Atsushi -- Nagata, Kyosuke -- Tame, Jeremy R H -- Park, Sam-Yong -- England -- Nature. 2008 Aug 28;454(7208):1127-31. doi: 10.1038/nature07225. Epub 2008 Jul 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Protein Design Laboratory, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18660801" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Line ; Crystallization ; Crystallography, X-Ray ; Humans ; Influenza A Virus, H1N1 Subtype/*enzymology/genetics ; Protein Binding ; Protein Subunits/*chemistry/genetics/*metabolism ; RNA Replicase/*chemistry/genetics/*metabolism ; Viral Proteins/*chemistry/genetics/*metabolism ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-11-20
    Description: The phytohormone abscisic acid (ABA) regulates the expression of many genes in plants; it has critical functions in stress resistance and in growth and development. Several proteins have been reported to function as ABA receptors, and many more are known to be involved in ABA signalling. However, the identities of ABA receptors remain controversial and the mechanism of signalling from perception to downstream gene expression is unclear. Here we show that by combining the recently identified ABA receptor PYR1 with the type 2C protein phosphatase (PP2C) ABI1, the serine/threonine protein kinase SnRK2.6/OST1 and the transcription factor ABF2/AREB1, we can reconstitute ABA-triggered phosphorylation of the transcription factor in vitro. Introduction of these four components into plant protoplasts results in ABA-responsive gene expression. Protoplast and test-tube reconstitution assays were used to test the function of various members of the receptor, protein phosphatase and kinase families. Our results suggest that the default state of the SnRK2 kinases is an autophosphorylated, active state and that the SnRK2 kinases are kept inactive by the PP2Cs through physical interaction and dephosphorylation. We found that in the presence of ABA, the PYR/PYL (pyrabactin resistance 1/PYR1-like) receptor proteins can disrupt the interaction between the SnRK2s and PP2Cs, thus preventing the PP2C-mediated dephosphorylation of the SnRK2s and resulting in the activation of the SnRK2 kinases. Our results reveal new insights into ABA signalling mechanisms and define a minimal set of core components of a complete major ABA signalling pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803041/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803041/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fujii, Hiroaki -- Chinnusamy, Viswanathan -- Rodrigues, Americo -- Rubio, Silvia -- Antoni, Regina -- Park, Sang-Youl -- Cutler, Sean R -- Sheen, Jen -- Rodriguez, Pedro L -- Zhu, Jian-Kang -- R01 GM059138/GM/NIGMS NIH HHS/ -- R01 GM059138-12/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Dec 3;462(7273):660-4. doi: 10.1038/nature08599. Epub 2009 Nov 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany and Plant Sciences, University of California at Riverside, Riverside, California 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19924127" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*physiology ; Arabidopsis/enzymology/*physiology ; Arabidopsis Proteins/genetics/metabolism/*physiology ; *Gene Expression Regulation, Plant ; Mutation ; Phenotype ; Phosphorylation ; Protoplasts/physiology ; *Signal Transduction ; Stress, Physiological/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-06-16
    Description: The cytokine transforming growth factor-beta (TGF-beta) converts naive T cells into regulatory T (Treg) cells that prevent autoimmunity. However, in the presence of interleukin-6 (IL-6), TGF-beta has also been found to promote the differentiation of naive T lymphocytes into proinflammatory IL-17 cytokine-producing T helper 17 (T(H)17) cells, which promote autoimmunity and inflammation. This raises the question of how TGF-beta can generate such distinct outcomes. We identified the vitamin A metabolite retinoic acid as a key regulator of TGF-beta-dependent immune responses, capable of inhibiting the IL-6-driven induction of proinflammatory T(H)17 cells and promoting anti-inflammatory Treg cell differentiation. These findings indicate that a common metabolite can regulate the balance between pro- and anti-inflammatory immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mucida, Daniel -- Park, Yunji -- Kim, Gisen -- Turovskaya, Olga -- Scott, Iain -- Kronenberg, Mitchell -- Cheroutre, Hilde -- R01 AI050265-06/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):256-60. Epub 2007 Jun 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17569825" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cells, Cultured ; Colitis/immunology ; Dendritic Cells/immunology ; Dibenzazepines/pharmacology ; Forkhead Transcription Factors/biosynthesis ; Interleukin-17/*biosynthesis ; Interleukin-2/immunology ; Interleukin-6/immunology ; Intestinal Mucosa/cytology/immunology ; Listeriosis/immunology ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Spleen/cytology/immunology ; T-Lymphocyte Subsets/cytology/*immunology ; T-Lymphocytes, Helper-Inducer/cytology/*immunology ; T-Lymphocytes, Regulatory/cytology/*immunology ; Transforming Growth Factor beta/metabolism/pharmacology ; Tretinoin/pharmacology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...