ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-07-17
    Description: Mass-spectrometry-based methods for relative proteome quantification have broadly affected life science research. However, important research directions, particularly those involving mathematical modelling and simulation of biological processes, also critically depend on absolutely quantitative data--that is, knowledge of the concentration of the expressed proteins as a function of cellular state. Until now, absolute protein concentration measurements of a considerable fraction of the proteome (73%) have only been derived from genetically altered Saccharomyces cerevisiae cells, a technique that is not directly portable from yeast to other species. Here we present a mass-spectrometry-based strategy to determine the absolute quantity, that is, the average number of protein copies per cell in a cell population, for a large fraction of the proteome in genetically unperturbed cells. Applying the technology to the human pathogen Leptospira interrogans, a spirochete responsible for leptospirosis, we generated an absolute protein abundance scale for 83% of the mass-spectrometry-detectable proteome, from cells at different states. Taking advantage of the unique cellular dimensions of L. interrogans, we used cryo-electron tomography morphological measurements to verify, at the single-cell level, the average absolute abundance values of selected proteins determined by mass spectrometry on a population of cells. Because the strategy is relatively fast and applicable to any cell type, we expect that it will become a cornerstone of quantitative biology and systems biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723184/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723184/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malmstrom, Johan -- Beck, Martin -- Schmidt, Alexander -- Lange, Vinzenz -- Deutsch, Eric W -- Aebersold, Ruedi -- N01 HV028179/HV/NHLBI NIH HHS/ -- N01-HV-28179/HV/NHLBI NIH HHS/ -- England -- Nature. 2009 Aug 6;460(7256):762-5. doi: 10.1038/nature08184. Epub 2009 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Systems Biology, ETH Zurich, Wolfgang Pauli-Strasse 16, CH-8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19606093" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*analysis/metabolism ; Chromatography, High Pressure Liquid ; Chromatography, Liquid/methods ; Cryoelectron Microscopy ; Electron Microscope Tomography ; Humans ; Leptospira interrogans/cytology/*metabolism ; Mass Spectrometry/*methods ; Proteome/*analysis/metabolism ; Proteomics/*methods ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Tandem Mass Spectrometry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-04-29
    Description: Store-operated Ca2+ entry is mediated by Ca2+ release-activated Ca2+ (CRAC) channels following Ca2+ release from intracellular stores. We performed a genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins that inhibit store-operated Ca2+ influx. A secondary patch-clamp screen identified CRACM1 and CRACM2 (CRAC modulators 1 and 2) as modulators of Drosophila CRAC currents. We characterized the human ortholog of CRACM1, a plasma membrane-resident protein encoded by gene FLJ14466. Although overexpression of CRACM1 did not affect CRAC currents, RNAi-mediated knockdown disrupted its activation. CRACM1 could be the CRAC channel itself, a subunit of it, or a component of the CRAC signaling machinery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vig, M -- Peinelt, C -- Beck, A -- Koomoa, D L -- Rabah, D -- Koblan-Huberson, M -- Kraft, S -- Turner, H -- Fleig, A -- Penner, R -- Kinet, J-P -- 5-R37-GM053950/GM/NIGMS NIH HHS/ -- R01-AI050200/AI/NIAID NIH HHS/ -- R01-GM065360/GM/NIGMS NIH HHS/ -- R01-NS040927/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2006 May 26;312(5777):1220-3. Epub 2006 Apr 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA. mvig@bidmc.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16645049" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Calcium Channels/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Drosophila Proteins/*genetics/*metabolism ; Drosophila melanogaster/*metabolism ; Endoplasmic Reticulum/metabolism ; Humans ; Ion Transport ; Jurkat Cells ; Membrane Proteins/genetics/*metabolism ; Patch-Clamp Techniques ; RNA Interference ; RNA, Small Interfering ; Reverse Transcriptase Polymerase Chain Reaction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-11-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beck, Moriah R -- Morgan, Elizabeth A -- Strand, Stephanie S -- Woolsey, Thomas A -- New York, N.Y. -- Science. 2006 Nov 24;314(5803):1246-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA. mrwillia@artsci.wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124309" target="_blank"〉PubMed〈/a〉
    Keywords: Biomedical Research ; Budgets ; Financial Support ; Humans ; *Mentors ; Missouri ; Science/*education ; Teaching ; Universities ; *Volunteers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...