ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-11-15
    Description: Rapid global warming of 5 degrees to 10 degrees C during the Paleocene-Eocene Thermal Maximum (PETM) coincided with major turnover in vertebrate faunas, but previous studies have found little floral change. Plant fossils discovered in Wyoming, United States, show that PETM floras were a mixture of native and migrant lineages and that plant range shifts were large and rapid (occurring within 10,000 years). Floral composition and leaf shape and size suggest that climate warmed by approximately 5 degrees C during the PETM and that precipitation was low early in the event and increased later. Floral response to warming and/or increased atmospheric CO2 during the PETM was comparable in rate and magnitude to that seen in postglacial floras and to the predicted effects of anthropogenic carbon release and climate change on future vegetation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wing, Scott L -- Harrington, Guy J -- Smith, Francesca A -- Bloch, Jonathan I -- Boyer, Douglas M -- Freeman, Katherine H -- New York, N.Y. -- Science. 2005 Nov 11;310(5750):993-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Paleobiology, Smithsonian Museum of Natural History, 10th Street and Constitution Avenue, NW, Washington, DC 20560, USA. wings@si.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16284173" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; Carbon Isotopes/analysis ; *Climate ; *Ecosystem ; *Fossils ; Geologic Sediments ; *Greenhouse Effect ; Oxygen Isotopes/analysis ; Plant Development ; Plant Leaves/anatomy & histology ; *Plants/anatomy & histology/classification ; Rain ; Temperature ; Time Factors ; Wyoming
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: Dust was collected over a period of several weeks in 2007 from various HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved, and the DNA was extracted. Using a DNA-based method called mold specific quantitative PCR (MSQPCR), 39 molds were measured in the dust. Opportunistic pathogens Aspergillus flavus and A. niger and toxin producers Penicillium chrysogenum and P. brevicompactum were found at relatively high concentrations (compared to U.S. homes). No cells of the opportunistic pathogens A. fumigatus, A. terreus, Fusarium solani or Candida albicans were detected.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: NASA will build an outpost on the lunar surface for long-duration human habitation and research. The surface of the Moon is covered by a layer of fine, reactive dust, and the living quarters in the lunar outpost are expected to be contaminated by lunar dust. NASA established the Lunar Airborne Dust Toxicity Advisory Group (LADTAG) to evaluate the risk of exposure to the dust and to establish safe exposure limits for astronauts working in the lunar habitat. Because the toxicity of lunar dust is not known, LADTAG has recommended investigating its toxicity in the lungs of laboratory animals. After receiving this recommendation, NASA directed the JSC Toxicology Laboratory to determine the pulmonary toxicity of lunar dust in exposed rodents. The rodent pulmonary toxicity studies proposed here are the same as those proposed by the LADTAG. Studies of the pulmonary toxicity of a dust are generally done first in rodents by intratracheal instillation (ITI). This toxicity screening test is then followed by an inhalation study, which requires much more of the test dust and is labor intensive. We succeeded in completing an ITI study on JSC-1 lunar dust simulant in mice (Lam et al., Inhalation Toxicology 14:901-916, 2002, and Inhalation Toxicology 14: 917-928, 2002), and have conducted a pilot ITI study to examine the acute toxicity of an Apollo lunar (highland) dust sample. Preliminary results obtained by examining lung lavage fluid from dust-treated mice show that lunar dust was somewhat toxic (more toxic than TiO2, but less than quartz dust). More extensive studies have been planned to further examine lung lavage fluid for biomarkers of toxicity and lung tissues for histopathological lesions in rodents exposed to aged and activated lunar dust samples. In these studies, reference dusts (TiO2 and quartz) of known toxicities and have industrial exposure limits will be studied in parallel so the relative toxicity of lunar dust can be determined. The ITI results will also be useful for choosing an exposure concentration for the animal inhalation study on a selected lunar dust sample, which is included as a part of this proposal. The animal inhalation exposure will be conducted with lunar dust simulant prior to the study with the lunar dust. The simulant exposure will ensure that the study techniques used with actual lunar dust will be successful. The results of ITI and inhalation studies will reveal the toxicological risk of exposures and are essential for setting exposure limits on lunar dust for astronauts living in the lunar habitat.
    Keywords: Life Sciences (General)
    Type: Human Research Program Investigators'' Workshop; Feb 04, 2008 - Feb 06, 2008; League City, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Carbon nanotubes (CNTs), which possess desirable electrical and mechanical properties, potentially have wide industrial applications. CNTs exist in two forms, single-wall (SW) and multi-wall (MW). There has been great concern that if CNTs enter the work environment as suspended respirable particulate matter (PM), they could pose an inhalation hazard. The results of recent rodent studies have collectively shown that CNTs can produce inflammation, epithelioid granulomas, fibrosis, and biochemical changes in the lungs. Studies in mice given equal amounts of test dusts showed that CNTs were more toxic than quartz and produced lesions that became progressively more pronounced. These results have led us to recommend that respirable CNT dust be considered a serious occupational health hazard, and that exposure limits be established in the expectation of expanded industrial applications. CNTs, which are totally insoluble and fibrous, would be expected to be more biopersistent than mineral fibers. Biopersistence is the key factor determining the long-term toxicity of mineral fibers and certainly of CNTs too. We have postulated that the electrical and fibrous properties of CNTs also play important roles in the toxicity of CNTs in the lungs. Recently, MWCNTs have been found in ultrafine PM aggregates in combustion streams of methane, propane, and natural-gas flames of typical stoves; indoor and outdoor fine (〈 2.5 micron) PM samples were reported to contain significant fractions of MWCNTs. Environmental fine PM is mainly formed from combustion of fuels, and fine PM has been reported to be a major contributor to the induction of cardiopulmonary diseases by pollutants. Given that manufactured SWCNTs and/or MWCNTs have elicited pathological changes in the lungs and heart, we have postulated that exposure to combustion-generated MWCNTs in fine PM in the air may play a significant role in air pollution-related cardiopulmonary diseases. Therefore, CNTs from manufacturing and combustion sources in the environment could have adverse effects on human health.
    Keywords: Life Sciences (General)
    Type: Society of Toxicology Annual Meeting; Mar 25, 2007 - Mar 29, 2007; Charlotte, NC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...