ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-12-09
    Description: Aeroallergy results from maladaptive immune responses to ubiquitous, otherwise innocuous environmental proteins. Although the proteins targeted by aeroallergic responses represent a tiny fraction of the airborne proteins humans are exposed to, allergenicity is a quite public phenomenon-the same proteins typically behave as aeroallergens across the human population. Why particular proteins tend to act as allergens in susceptible hosts is a fundamental mechanistic question that remains largely unanswered. The main house-dust-mite allergen, Der p 2, has structural homology with MD-2 (also known as LY96), the lipopolysaccharide (LPS)-binding component of the Toll-like receptor (TLR) 4 signalling complex. Here we show that Der p 2 also has functional homology, facilitating signalling through direct interactions with the TLR4 complex, and reconstituting LPS-driven TLR4 signalling in the absence of MD-2. Mirroring this, airway sensitization and challenge with Der p 2 led to experimental allergic asthma in wild type and MD-2-deficient, but not TLR4-deficient, mice. Our results indicate that Der p 2 tends to be targeted by adaptive immune responses because of its auto-adjuvant properties. The fact that other members of the MD-2-like lipid-binding family are allergens, and that most defined major allergens are thought to be lipid-binding proteins, suggests that intrinsic adjuvant activity by such proteins and their accompanying lipid cargo may have some generality as a mechanism underlying the phenomenon of allergenicity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843411/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843411/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trompette, Aurelien -- Divanovic, Senad -- Visintin, Alberto -- Blanchard, Carine -- Hegde, Rashmi S -- Madan, Rajat -- Thorne, Peter S -- Wills-Karp, Marsha -- Gioannini, Theresa L -- Weiss, Jerry P -- Karp, Christopher L -- R01 AI075159/AI/NIAID NIH HHS/ -- R01 AI075159-01/AI/NIAID NIH HHS/ -- R01 EY014648/EY/NEI NIH HHS/ -- R01 HL067736/HL/NHLBI NIH HHS/ -- R01 HL067736-05/HL/NHLBI NIH HHS/ -- England -- Nature. 2009 Jan 29;457(7229):585-8. doi: 10.1038/nature07548. Epub 2008 Dec 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Immunology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19060881" target="_blank"〉PubMed〈/a〉
    Keywords: Air ; Allergens/chemistry/genetics/*immunology/*metabolism ; Animals ; Antigens, Dermatophagoides/chemistry/genetics/*immunology/*metabolism ; Arthropod Proteins ; Asthma/genetics/immunology ; Cell Line ; Disease Models, Animal ; Female ; Humans ; Lipopolysaccharides/immunology ; Lymphocyte Antigen 96/chemistry/deficiency/genetics/immunology/metabolism ; Mice ; Molecular Mimicry/*immunology ; Protein Binding ; Toll-Like Receptor 4/deficiency/genetics/*immunology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-08-14
    Description: Targeting of newly synthesized membrane proteins to the endoplasmic reticulum is an essential cellular process. Most membrane proteins are recognized and targeted co-translationally by the signal recognition particle. However, nearly 5% of membrane proteins are 'tail-anchored' by a single carboxy-terminal transmembrane domain that cannot access the co-translational pathway. Instead, tail-anchored proteins are targeted post-translationally by a conserved ATPase termed Get3. The mechanistic basis for tail-anchored protein recognition or targeting by Get3 is not known. Here we present crystal structures of yeast Get3 in 'open' (nucleotide-free) and 'closed' (ADP.AlF(4)(-)-bound) dimer states. In the closed state, the dimer interface of Get3 contains an enormous hydrophobic groove implicated by mutational analyses in tail-anchored protein binding. In the open state, Get3 undergoes a striking rearrangement that disrupts the groove and shields its hydrophobic surfaces. These data provide a molecular mechanism for nucleotide-regulated binding and release of tail-anchored proteins during their membrane targeting by Get3.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mateja, Agnieszka -- Szlachcic, Anna -- Downing, Maureen E -- Dobosz, Malgorzata -- Mariappan, Malaiyalam -- Hegde, Ramanujan S -- Keenan, Robert J -- MC_UP_A022_1007/Medical Research Council/United Kingdom -- Intramural NIH HHS/ -- England -- Nature. 2009 Sep 17;461(7262):361-6. doi: 10.1038/nature08319. Epub 2009 Aug 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry & Molecular Biology, The University of Chicago, Gordon Center for Integrative Science, Room W238, 929 East 57th Street, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19675567" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphatases/*chemistry/*metabolism ; Adenosine Triphosphate/metabolism ; Aluminum Compounds/chemistry/metabolism ; Crystallography, X-Ray ; Fluorides/chemistry/metabolism ; Guanine Nucleotide Exchange Factors/*chemistry/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Membrane Proteins/chemistry/*metabolism ; Methanococcus ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Saccharomyces cerevisiae/*chemistry ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...