ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-05-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lane, Nick -- England -- Nature. 2008 May 29;453(7195):583-5. doi: 10.1038/453583a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18509414" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/*physiology ; Caspase Inhibitors ; Caspases/metabolism ; Cyanobacteria/cytology/enzymology ; Diatoms/cytology/enzymology ; Humans ; Marine Biology ; Microbiology ; Oxidative Stress ; Phytoplankton/*cytology/enzymology/metabolism/virology ; Reactive Oxygen Species/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-04-10
    Description: Preventing and delaying the emergence of drug resistance is an essential goal of antimalarial drug development. Monotherapy and highly mutable drug targets have each facilitated resistance, and both are undesirable in effective long-term strategies against multi-drug-resistant malaria. Haem remains an immutable and vulnerable target, because it is not parasite-encoded and its detoxification during haemoglobin degradation, critical to parasite survival, can be subverted by drug-haem interaction as in the case of quinolines and many other drugs. Here we describe a new antimalarial chemotype that combines the haem-targeting character of acridones, together with a chemosensitizing component that counteracts resistance to quinoline antimalarial drugs. Beyond the essential intrinsic characteristics common to deserving candidate antimalarials (high potency in vitro against pan-sensitive and multi-drug-resistant Plasmodium falciparum, efficacy and safety in vivo after oral administration, inexpensive synthesis and favourable physicochemical properties), our initial lead, T3.5 (3-chloro-6-(2-diethylamino-ethoxy)-10-(2-diethylamino-ethyl)-acridone), demonstrates unique synergistic properties. In addition to 'verapamil-like' chemosensitization to chloroquine and amodiaquine against quinoline-resistant parasites, T3.5 also results in an apparently mechanistically distinct synergism with quinine and with piperaquine. This synergy, evident in both quinoline-sensitive and quinoline-resistant parasites, has been demonstrated both in vitro and in vivo. In summary, this innovative acridone design merges intrinsic potency and resistance-counteracting functions in one molecule, and represents a new strategy to expand, enhance and sustain effective antimalarial drug combinations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kelly, Jane X -- Smilkstein, Martin J -- Brun, Reto -- Wittlin, Sergio -- Cooper, Roland A -- Lane, Kristin D -- Janowsky, Aaron -- Johnson, Robert A -- Dodean, Rozalia A -- Winter, Rolf -- Hinrichs, David J -- Riscoe, Michael K -- England -- Nature. 2009 May 14;459(7244):270-3. doi: 10.1038/nature07937. Epub 2009 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Portland Veterans Affairs Medical Centre, Portland, Oregon 97239, USA. kellyja@ohsu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19357645" target="_blank"〉PubMed〈/a〉
    Keywords: Acridones/analysis/metabolism/*pharmacology ; Animals ; Antimalarials/analysis/metabolism/*pharmacology ; *Drug Discovery ; Drug Resistance/drug effects ; Drug Synergism ; Heme/antagonists & inhibitors/metabolism ; Membrane Transport Proteins/genetics/metabolism ; Mutation/genetics ; Plasmodium falciparum/*drug effects/genetics/growth & development/metabolism ; Plasmodium yoelii/drug effects ; Protozoan Proteins/genetics/metabolism ; Quinine/pharmacology ; Quinolines/pharmacology ; Trophozoites/metabolism ; Verapamil/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-11-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lane, Nick -- England -- Nature. 2009 Nov 19;462(7271):272-4. doi: 10.1038/462272a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19924185" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Automatic Data Processing ; *Biodiversity ; Genes, Mitochondrial/genetics ; Genetic Speciation ; Humans ; Mutation/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...