ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion  (3)
  • 01. Atmosphere::01.03. Magnetosphere::01.03.99. General or miscellaneous  (2)
  • 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods  (1)
  • Editrice Compositori  (4)
  • Istituto Nazionale di Oceanografia e di Geofisica Sperimentale  (1)
  • Wiley-Blackwell  (1)
  • 2005-2009  (6)
Collection
Publisher
Years
  • 2005-2009  (6)
Year
  • 1
    Publication Date: 2017-04-04
    Description: In the frame of the European COST 296 project (Mitigation of Ionospheric Effects on Radio Systems, MIERS)investigations of the climate of the upper atmosphere have been carried out during the last four years to obtain new information on the upper atmosphere. Mainly its ionospheric part has been analysed as the ionosphere is most essential for the propagation of radio waves. Due to collaboration between different European partners many new results have been derived in the fields of long-term trends of different ionospheric and related atmospheric parameters, the investigations of different types of atmospheric waves and their impact on the ionosphere, the variability of the ionosphere, and the investigation of some space weather effects on the ionosphere.
    Description: Published
    Description: 273-299
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: JCR Journal
    Description: reserved
    Keywords: Ionosphere ; trends ; atmospheric waves ; ionospheric variability ; incoherent radar ; space weather ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.03. Magnetosphere::01.03.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-11
    Description: The site of the European Gravitational Observatory (EGO) located in the countryside near Pisa (Tuscany, Italy) was investigated by a microgravity vertical gradient (MVG) survey. The EGO site houses the VIRGO interferometric antenna for gravitational waves detection. The microgravity survey aims to highlight the gravity anomalies of high-frequency related to more superficial geological sources in order to obtain a detailed model of the lithologic setting of the VIRGO site, that will allow an estimate of the noise induced by seismic waves and by Newtonian interference. This paper presents the results of the gradiometric survey of 2006 in the area of the interferometric antenna. MVG measurements allow us to enhance the high frequency signal strongly associated with the shallow structures. The gradient gravity map shows a main negative pattern that seems related to the trending of the high density layer of gravel that was evidenced in geotechnical drillings executed along the orthogonal arms during the construction of the VIRGO complex. Calibrating the relationship between the vertical gradient and the depth of the gravel interface we have computed a model of gravity gradient for the whole VIRGO site, defining the 3D distribution of the top surface of this layer. This latter shows a NE-SW negative pattern that may represent a palaeo-bed alluvial of the Serchio from the Bientina River system.
    Description: Published
    Description: 877-886
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: open
    Keywords: Microgravity vertical gradient ; near surface geology ; gravity modeling ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: A new Italian strong-motion data base was created during a joint project between Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italian Institute for Geophysics and Vulcanology) and Dipartimento della Protezione Civile (DPC, Italian civil protection). The aim of the project was the collection, homogenization and distribution of strong motion data acquired in the time span 1972-2004 in Italy by different institutions, namely Ente Nazionale per l’Energia Elettrica (ENEL, Italian electricity company), Ente per le Nuove tecnologie, l’Energia e l’Ambiente (ENEA, Italian energy and environment organization) and DPC with different purposes, such as permanent strong motion monitoring and temporary monitoring during seismic sequences or before permanent installation. The data base contains 2182 three component waveforms generated by 1004 earthquakes with a maximum moment magnitude of 6.9 (1980 Irpinia earthquake) and can be accessed on-line at the site http://itaca.mi.ingv.it, where a wide range of search tools enables the user to interactively retrieve events, recording stations and waveforms with particular characteristics, whose parameters can be specified, as needed, through user friendly interfaces. A range of display options allows users to view data in different contexts, extract and download time series and spectral data. This article describes the data base structure and the working steps which led to the completion of the project.
    Description: In press
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: N/A or not JCR
    Description: open
    Keywords: Strong-ground motion ; database ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In the frame of the European COST 296 project (Mitigation of Ionospheric Effects on Radio Systems, MIERS)in the Working Package 1.3, new ionospheric models, prediction and forecasting methods and programs as well as ionospheric imaging techniques have been developed. They include (i) topside ionosphere and meso-scale irregularity models, (ii) improved forecasting methods for real time forecasting and for prediction of foF2, M(3000)F2, MUF and TECs, including the use of new techniques such as Neurofuzzy, Nearest Neighbour, Cascade Modelling and Genetic Programming and (iii) improved dynamic high latitude ionosphere models through tomographic imaging and model validation. The success of the prediction algorithms and their improvement over existing methods has been demonstrated by comparing predictions with later real data. The collaboration between different European partners (including interchange of data) has played a significant part in the development and validation of these new prediction and forecasting methods, programs and algorithms which can be applied to a variety of practical applications leading to improved mitigation of ionosphereic and space weather effects.
    Description: Published
    Description: 255-271
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: open
    Keywords: Ionospheric modeling ; ionospheric forecasting ; ionospheric predictions ; 01. Atmosphere::01.02. Ionosphere::01.02.03. Forecasts ; 01. Atmosphere::01.03. Magnetosphere::01.03.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The strong motion data of 2009 April 6 L’Aquila (Central Italy) earthquake (Mw = 6.3) and of 12 aftershocks (4.1 ≤ Mw ≤ 5.6) recorded by 56 stations of the Italian strong motion network are spectrally analysed to estimate the source parameters, the seismic attenuation, and the site amplification effects. The obtained source spectra for S wave have stress drop values ranging from 2.4 to 16.8 MPa, being the stress drop of the main shock equal to 9.2 MPa. The spectral curves describing the attenuation with distance show the presence of shoulders and bumps, mainly around 50 and 150 km, as consequence of significant reflected and refracted arrivals from crustal interfaces. The attenuation in the first 50 km is well described by a quality factor equal to Q( f ) = 59 f 0.56 obtained by fixing the geometrical spreading exponent to 1. Finally, the horizontal-to-vertical spectral ratio provides unreliable estimates of local site effects for those stations showing large amplifications over the vertical component of motion.
    Description: Published
    Description: 1573–1579
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: Generalized inversion ; strong-motion ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-11-04
    Description: The scaling law of the seismic spectrum experimentally calculated at Mt. Vesuvius and Campi Flegrei is used to constrain the estimate of the maximum expected peak acceleration of ground motion.
    Description: Published
    Description: 1377-1389
    Description: JCR Journal
    Description: open
    Keywords: Peak ground acceleration ; Scaling law ; Stochastic method ; Mt. Vesuvius ; Campi Flegrei ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 12315292 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...