ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Desulfobacteriales  (1)
  • Hydrothermal vents  (1)
  • American Society for Microbiology  (2)
  • 2005-2009  (2)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Society for Microbiology, 2005. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 71 (2005): 6383-6387, doi:10.1128/AEM.71.10.6383-6387.2005.
    Description: The ability of metabolically diverse hyperthermophilic archaea to withstand high temperatures, low pHs, high sulfide concentrations, and the absence of carbon and energy sources was investigated. Close relatives of our study organisms, Methanocaldococcus jannaschii, Archaeoglobus profundus, Thermococcus fumicolans, and Pyrococcus sp. strain GB-D, are commonly found in hydrothermal vent chimney walls and hot sediments and possibly deeper in the subsurface, where highly dynamic hydrothermal flow patterns and steep chemical and temperature gradients provide an ever-changing mosaic of microhabitats. These organisms (with the possible exception of Pyrococcus strain GB-D) tolerated greater extremes of low pH, high sulfide concentration, and high temperature when actively growing and metabolizing than when starved of carbon sources and electron donors/acceptors. Therefore these organisms must be actively metabolizing in the hydrothermal vent chimneys, sediments, and subsurface in order to withstand at least 24 h of exposure to extremes of pH, sulfide, and temperature that occur in these environments.
    Description: This study was supported by the NSF (Life in Extreme Environments grant OCE-0085534 to A.T., S.J.M., S.B., K.G.L., S.B., and C.O.W.), the MBL (Environmental Genomes, S/C NCC2-1054) and URI (Subsurface Biospheres) NASA Astrobiology Institute Teams (A.T. and S.J.M.), an NSF Postdoctoral Fellowship in Microbial Biology (M.S.A.), and an NRC Astrobiology postdoctoral fellowship (V.P.E.).
    Keywords: Hyperthermophilic archaea ; Hydrothermal vents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 66771 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Society for Microbiology, 2003. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 69 (2003): 2765-2772, doi:10.1128/AEM.69.5.2765-2772.2003.
    Description: The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing.
    Description: This study was supported by the NASA Astrobiology Institute (grant CAN NCC2-1054) and by the G. Unger Vetlesen Foundation. Sampling at the Guaymas Basin was made possible by NSF Life in Extreme Environments grant OCE 9714195 to A.T.
    Keywords: Sulfate-reducing bacteria ; Desulfobacteriales
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 276369 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...