ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-05-15
    Description: Responses of the thermohaline circulation (THC) to freshwater forcing (hosing) in the subpolar North Atlantic Ocean under present-day and the last glacial maximum (LGM) conditions are investigated using the National Center for Atmospheric Research Community Climate System Model versions 2 and 3. Three sets of simulations are analyzed, with each set including a control run and a freshwater hosing run. The first two sets are under present-day conditions with an open and closed Bering Strait. The third one is under LGM conditions, which has a closed Bering Strait. Results show that the THC nearly collapses in all three hosing runs when the freshwater forcing is turned on. The full recovery of the THC, however, is at least a century earlier in the open Bering Strait run than the closed Bering Strait and LGM runs. This is because the excessive freshwater is diverged almost equally toward north and south from the subpolar North Atlantic when the Bering Strait is open. A significant portion of the freshwater flowing northward into the Arctic exits into the North Pacific via a reversed Bering Strait Throughflow, which accelerates the THC recovery. When the Bering Strait is closed, this Arctic to Pacific transport is absent and freshwater can only be removed through the southern end of the North Atlantic. Together with the surface freshwater excess due to precipitation, evaporation, river runoff, and melting ice in the closed Bering Strait experiments after the hosing, the removal of the excessive freshwater takes longer, and this slows the recovery of the THC. Although the background conditions are quite different between the present-day closed Bering Strait run and the LGM run, the THC responds to the freshwater forcing added in the North Atlantic in a very similar manner.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-10-01
    Description: The occurrence of a bright band, a layer of enhanced reflectivity due to melting of aggregated snow, increases uncertainties in radar-based quantitative precipitation estimation (QPE). The height of the brightband layer is an indication of 0°C isotherm and can be useful in identifying areas of potential icing for aviation and in the data assimilation for numerical weather prediction (NWP). Extensive analysis of vertical profiles of reflectivity (VPRs) derived from the Weather Surveillance Radar-1988 Doppler (WSR-88D) base level data showed that the brightband signature could be easily identified from the VPRs. As a result, an automated brightband identification (BBID) scheme has been developed. The BBID algorithm can determine from a volume scan mean VPR and a background freezing level height from a numerical weather prediction model whether a bright band exists and the height of the brightband layer. The paper presents a description of the BBID scheme and evaluation results from a large dataset from WSR-88D radars in different geographical regions and seasons.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-05-01
    Description: Communities and many industries are affected by severe weather and have a need for real-time accurate Weather Surveillance Radar-1988 Doppler (WSR-88D) data spanning several regions. To fulfill this need the National Severe Storms Laboratory has developed a Four-Dimensional Dynamic Grid (4DDG) to accurately represent discontinuous radar reflectivity data over a continuous 4D domain. The objective is to create a seamless, rapidly updating radar mosaic that is well suited for use by forecasters in addition to advance radar applications such as qualitative precipitation estimates. Several challenges are associated with creating a 3D radar mosaic given the nature of radar data and the spherical coordinates of radar observations. The 4DDG uses spatial and temporal weighting schemes to overcome these challenges, with the intention of applying minimal smoothing to the radar data. Previous multiple radar mosaics functioned in two or three dimensions using a variety of established weighting schemes. The 4DDG has the advantage of temporal weighting to smooth radar observations over time. Using an exponentially decaying weighting scheme, this paper will examine different weather scenarios and show the effects of temporal smoothing using different time scales. Specifically, case examples of the 4DDG approach involving a rapidly evolving convective event and a slowly developing stratiform weather regime are considered.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...