ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (6)
  • Paleontological Society  (6)
  • 2005-2009  (12)
  • 1
    Publication Date: 2009-01-01
    Description: The tropical cyclone (TC) track forecasts of the Navy Operational Global Atmospheric Prediction System (NOGAPS) were evaluated for a number of data assimilation experiments conducted using observational data from two periods: 4 July–31 October 2005 and 1 August–30 September 2006. The experiments were designed to illustrate the impact of different types of satellite observations on the NOGAPS TC track forecasts. The satellite observations assimilated in these experiments consisted of feature-track winds from geostationary and polar-orbiting satellites, Special Sensor Microwave Imager (SSM/I) total column precipitable water and wind speeds, Advanced Microwave Sounding Unit-A (AMSU-A) radiances, and Quick Scatterometer (QuikSCAT) and European Remote Sensing Satellite-2 (ERS-2) scatterometer winds. There were some differences between the results from basin to basin and from year to year, but the combined results for the 2005 and 2006 test periods for the North Pacific and Atlantic Ocean basins indicated that the assimilation of the feature-track winds from the geostationary satellites had the most impact, ranging from 7% to 24% improvement in NOGAPS TC track forecasts. This impact was statistically significant at all forecast lengths. The impact of the assimilation of SSM/I precipitable water was consistently positive and statistically significant at all forecast lengths. The improvements resulting from the assimilation of AMSU-A radiances were also consistently positive and significant at most forecast lengths. There were no significant improvements/degradations from the assimilation of the other satellite observation types [e.g., Moderate Resolution Imaging Spectroradiometer (MODIS) winds, SSM/I wind speeds, and scatterometer winds]. The assimilation of all satellite observations resulted in a gain in skill of roughly 12 h for the NOGAPS 48- and 72-h TC track forecasts and a gain in skill of roughly 24 h for the 96- and 120-h forecasts. The percent improvement in these forecasts ranged from almost 20% at 24 h to over 40% at 120 h.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-01-01
    Description: In recent years several authors have questioned the reality of a widely accepted and apparently large increase in marine biodiversity through the Cenozoic. Here we use collection-level occurrence data from the rich and uniquely well documented New Zealand (NZ) shelfal marine mollusc fauna to test this question at a regional scale. Because the NZ data were generated by a small number of workers and have been databased over many decades, we have been able to either avoid or quantify many of the biases inherent in analyses of past biodiversity. In particular, our major conclusions are robust to several potential taphonomic and systematic biases and methodological uncertainties, namely non-uniform loss of aragonitic faunas, biostratigraphic range errors, taxonomic errors, choice of time bins, choice of analytical protocols, and taxonomic rank of analysis.The number of taxa sampled increases through the Cenozoic. Once diversity estimates are standardized for sampling biases, however, we see no evidence for an increase in marine mollusc diversity in the NZ region through the middle and late Cenozoic. Instead, diversity has been approximately constant for much of the past 40 Myr and, at the species and genus levels, has declined over the past ~5 Myr. Assuming that the result for NZ shelfal molluscs is representative of other taxonomic groups and other temperate faunal provinces, then this suggests that the postulated global increase in diversity is either an artifact of sampling bias or analytical methods, resulted from increasing provinciality, or was driven by large increases in diversity in tropical regions. We see no evidence for a species-area effect on diversity. Likewise, we are unable to demonstrate a relationship between marine temperature and diversity, although this question should be re-examined once refined shallow marine temperature estimates become available.
    Print ISSN: 0094-8373
    Electronic ISSN: 0094-8373
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-09-01
    Print ISSN: 0094-8373
    Electronic ISSN: 0094-8373
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-12-01
    Print ISSN: 0094-8373
    Electronic ISSN: 0094-8373
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-08-01
    Description: The Weber barotropic model (WBAR) was originally developed using predefined 850–200-hPa analyses and forecasts from the NCEP Global Forecasting System. The WBAR tropical cyclone (TC) track forecast performance was found to be competitive with that of more complex numerical weather prediction models in the North Atlantic. As a result, WBAR was revised to incorporate the Navy Operational Global Atmospheric Prediction System (NOGAPS) analyses and forecasts for use at the Joint Typhoon Warning Center (JTWC). The model was also modified to analyze its own storm-dependent deep-layer mean fields from standard NOGAPS pressure levels. Since its operational installation at the JTWC in May 2003, WBAR TC track forecast performance has been competitive with the performance of other more complex NWP models in the western North Pacific. Its TC track forecast performance combined with its high availability rate (93%–95%) has warranted its inclusion in the JTWC operational consensus. The impact of WBAR on consensus TC track forecast performance has been positive and WBAR has added to the consensus forecast availability (i.e., having at least two models to provide a consensus forecast).
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-01-01
    Print ISSN: 0022-3360
    Electronic ISSN: 1937-2337
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-01-01
    Description: TheActinoceramus sulcatuslineage (Parkinson, 1819) (Bivalvia: Inoceramidae) is a very distinctive and abundant component of late Albian (Early Cretaceous) molluscan assemblages that is found throughout Europe, Central Asia, Japan and the Far East of Russia, southern and western North America, South Africa, and possibly India, in a range of shallow- to deep-marine facies. The lineage encompasses a wide and continuous range of morphologies that provide evidence of phyletic evolution at varying rates combined with large ecophenotypic plasticity within populations. The evolution ofA. sulcatusmarks the oldest appearance of well-developed radial folds and sulci within the Inoceramidae. The range of morphological variation makes formal taxonomic subdivision of the group problematic. Here we use a combination of formal successional subspecies and informal morphotypes to subdivide the lineage into the following taxa:A. sulcatusformasulcatus, A. sulcatusformasubsulcatus(Wiltshire, 1869),A. sulcatusformamunsoni(Cragin, 1894), andA. sulcatus biometricusCrampton, 1996. Within these taxa and morphotypes, we synonymise a large number of earlier names that have been applied to variants within the lineage. Each of the forms recognized has biostratigraphic utility and we describe four new lineage biozones, in ascending order:A. concentricus parabolicus, A. sulcatus, A. sulcatusformamunsoni, andA. sulcatus biometricusbiozones. The lowest occurrence ofA. sulcatusis approximately coincident with the base of the upper Albian as currently defined, at least throughout most of Europe, and this datum provides a valuable tool in correlation. The nature of radial folds within theA. sulcatuslineage poses interesting but still unanswered questions regarding shell morphogenesis in bivalves and the functional significance (if any) of radial folds in the Inoceramidae.
    Print ISSN: 0022-3360
    Electronic ISSN: 1937-2337
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-02-01
    Description: In this study, new estimates of monthly freshwater discharge from continents, drainage regions, and global land for the period of 2003–05 are presented. The method uses observed terrestrial water storage change estimates from the Gravity Recovery and Climate Experiment (GRACE) and reanalysis-based atmospheric moisture divergence and precipitable water tendency in a coupled land–atmosphere water mass balance. The estimates of freshwater discharge are analyzed within the context of global climate and compared with previously published estimates. Annual cycles of observed streamflow exhibit stronger correlations with the computed discharge compared to those with precipitation minus evapotranspiration (P − E) in several of the world’s largest river basins. The estimate presented herein of the mean monthly discharge from South America (∼846 km3 month−1) is the highest among the continents and that flowing into the Atlantic Ocean (∼1382 km3 month−1) is the highest among the drainage regions. The volume of global freshwater discharge estimated here is 30 354 ± 1212 km3 yr−1. Monthly variations of global freshwater discharge peak between August and September and reach a minimum in February. Global freshwater discharge is also computed using a global ocean–atmosphere mass balance in order to validate the land–atmosphere water balance estimates and as a measure of global water budget closure. Results show close proximity between the two estimates of global discharge at monthly (RMSE = 329 km3 month−1) and annual time scales (358 km3 yr−1). Results and comparisons to observations indicate that the method shows important potential for global-scale monitoring of combined surface water and submarine groundwater discharge at near-real time, as well as for contributing to contemporary global water balance studies and for constraining global hydrologic model simulations.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-05-01
    Description: The extent to which the tropical cyclone (TC) track forecast error of a consensus model (CONU) routinely used by the forecasters at the National Hurricane Center can be predicted is determined. A number of predictors of consensus forecast error, which must be quantities that are available prior to the official forecast deadline, were examined for the Atlantic basin in 2001–03. Leading predictors were found to be consensus model spread, defined to be the average distance of the member forecasts from the consensus forecast, and initial and forecast TC intensity. Using stepwise linear regression and the full pool of predictors, regression models were found for each forecast length to predict the CONU TC track forecast error. The percent variance of CONU TC track forecast error that could be explained by these regression models ranged from just over 15% at 48 h to nearly 50% at 120 h. Using the regression models, predicted radii were determined and were used to draw circular areas around the CONU forecasts that contained the verifying TC position 73%–76% of the time. Based on the size of these circular areas, a forecaster can determine the confidence that can be placed upon the CONU forecasts. Independent data testing yielded results only slightly degraded from those of dependent data testing, highlighting the capability of these methods in practical forecasting applications.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-10-01
    Description: This work identifies and documents a suite of large-scale drivers of rainfall variability in the Australian region. The key driver in terms of broad influence and impact on rainfall is the El Niño–Southern Oscillation (ENSO). ENSO is related to rainfall over much of the continent at different times, particularly in the north and east, with the regions of influence shifting with the seasons. The Indian Ocean dipole (IOD) is particularly important in the June–October period, which spans much of the wet season in the southwest and southeast where IOD has an influence. ENSO interacts with the IOD in this period such that their separate regions of influence cover the entire continent. Atmospheric blocking also becomes most important during this period and has an influence on rainfall across the southern half of the continent. The Madden–Julian oscillation can influence rainfall in different parts of the continent in different seasons, but its impact is strongest on the monsoonal rains in the north. The influence of the southern annular mode is mostly confined to the southwest and southeast of the continent. The patterns of rainfall relationship to each of the drivers exhibit substantial decadal variability, though the characteristic regions described above do not change markedly. The relationships between large-scale drivers and rainfall are robust to the selection of typical indices used to represent the drivers. In most regions the individual drivers account for less than 20% of monthly rainfall variability, though the drivers relate to a predictable component of this variability. The amount of rainfall variance explained by individual drivers is highest in eastern Australia and in spring, where it approaches 50% in association with ENSO and blocking.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...