ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (13)
  • Cambridge University Press  (5)
  • American Meteorological Society  (4)
  • Society of Exploration Geophysicists  (4)
  • 2005-2009  (13)
Collection
  • Articles  (13)
Years
Year
  • 1
    Publication Date: 2007-07-01
    Description: New satellite and in situ observations show large intraseasonal (10–60 day) variability of surface winds and upper-ocean current in the equatorial Indian Ocean, particularly in the east. An ocean model forced by the Quick Scatterometer (QuikSCAT) wind stress is used to study the dynamics of the intraseasonal zonal current. The model has realistic upper-ocean currents and thermocline depth variabilities on intraseasonal to interannual scales. The quality of the simulation is directly attributed to the accuracy of the wind forcing. At the equator, moderate westerly winds are punctuated by strong 10–40-day westerly wind bursts. The wind bursts force swift, intraseasonal (20–50 day) eastward equatorial jets in spring, summer, and fall. The zonal momentum balance is between local acceleration, stress, and pressure, while nonlinearity deepens and strengthens the eastward current. The westward pressure force associated with the thermocline deepening toward the east rapidly arrests eastward jets and, subsequently, generates (weak) westward flow. Thus, in accord with direct observations in the east, the spring jet is a single intraseasonal event, there are intraseasonal jets in summer, and the fall jet is long lived but strongly modulated on an intraseasonal scale. The zonal pressure force is almost always westward in the upper 120 m, and changes sign twice a year in the 120–200-m layer. Transient eastward equatorial undercurrents in early spring and late summer are associated with semiannual Rossby waves generated at the eastern boundary following thermocline deepening by the spring and fall jets. An easterly wind stress is not necessary to generate the undercurrents. Experiments with a single westerly wind burst forcing show that apart from the intraseasonal response, the zonal pressure force and current in the east have an intrinsic 90-day time scale that arises purely from equatorial adjustment.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-02-01
    Description: Vortex shedding behind a cylinder can be controlled by placing another small cylinder behind it, at low Reynolds numbers. This has been demonstrated experimentally by Strykowski & Sreenivasan (J. Fluid Mech. vol. 218, 1990, p. 74). These authors also provided preliminary numerical results, modelling the control cylinder by the innovative application of boundary conditions on some selective nodes. There are no other computational and theoretical studies that have explored the physical mechanism. In the present work, using an over-set grid method, we report and verify numerically the experimental results for flow past a pair of cylinders. Apart from providing an accurate solution of the Navier-Stokes equation, we also employ an energy-based receptivity analysis method to discuss some aspects of the physical mechanism behind vortex shedding and its control. These results are compared with the flow picture developed using a dynamical system approach based on the proper orthogonal decomposition (POD) technique. © 2007 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-04-25
    Description: The leading-edge contamination (LEC) problem of an infinite swept wing is shown here as vortex-induced instability. The governing equation for receptivity is presented for LEC in terms of disturbance energy based on the Navier-Stokes equation. The unperturbed shear layer given by the swept Hiemenz boundary-layer solution is two-dimensional and an exact solution of incompressible the Navier-Stokes equation. Thus, the LEC problem is solved numerically by solving the full two-dimensional Navier Stokes equation. The contamination at the attachment-line is shown by solving a receptivity to a convecting vortex moving outside the attachment-line boundary layer, which triggers subcritical spatio-temporal instability. The mechanism of LEC is shown to be due es sentially to a convecting counter-clockwise rotating vortex, whereas a clockwise rotating vortex displays much weaker receptivity. These results are consistent with experimental results for the bypass mechanism. The role of linear and n onlinear mechanisms in the contamination problem is discussed as interactions between vorticity and velocity terms of the developed receptivity equation. The computed temporal growth rates reveal pattern formation during such instabilities. Proper orthogonal decomposition (POD) of the numerical solution shows the structure of the leading eigenvector as the coherent eddy excited during the bypass transition. © 2005 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-10-30
    Description: Accelerated flow past a NACA 0015 aerofoil is investigated experimentally and computationally for Reynolds number Re = 7968 at an angle of attack α = 30°. Experiments are conducted in a specially designed piston-driven water tunnel capable of producing free-stream velocity with different ramp-type accelerations, and the DPIV technique is used to measure the resulting flow field past the aerofoil. Computations are also performed for other published data on flow past an NACA 0015 aerofoil in the range 5200 ≤ Re ≤ 35000, at different angles of attack. One of the motivations is to see if the salient features of the flow captured experimentally can be reproduced numerically. These computations to solve the incompressible Navier-Stokes equation are performed using high-accuracy compact schemes. Load and moment coefficient variations with time are obtained by solving the Poisson equation for the total pressure in the flow field. Results have also been analysed using the proper orthogonal decomposition technique to understand better the evolving vorticity field and its dependence on Reynolds number and angle of attack. An energy-based stability analysis is performed to understand unsteady flow separation. © 2007 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-03-01
    Description: This study addresses the problem of four-dimensional (4D) estimation of a cloudy atmosphere on cloud-resolving scales using satellite remote sensing measurements. The motivation is to develop a methodology for accurate estimation of cloud properties and the associated atmospheric environment on small spatial scales but over large regions to aid in better understanding of the clouds and their role in the atmospheric system. The problem is initially approached by the study of the assimilation of the Geostationary Operational Environmental Satellite (GOES) imager observations into a cloud-resolving model with explicit bulk cloud microphysical parameterization. A new 4D variational data assimilation (4DVAR) research system with the cloud-resolving capability is applied to a case of a multilayered cloud evolution without convection. In the experiments the information content of the IR window channels is addressed as well as the sensitivity of estimation to lateral boundary condition errors, model first guess, decorrelation length in the background statistical error model, and the use of a generic linear model error. The assimilation results are compared with independent observations from the Atmospheric Radiation Measurement (ARM) central facility archive. The modeled 3D spatial distribution and short-term evolution of the ice cloud mass is significantly improved by the assimilation of IR window channels when the model already contains conditions for the ice cloud formation. The assimilated ice cloud in this case is in good agreement with the independent cloud radar measurements. The simulation of liquid clouds below thick ice clouds is not influenced by the IR window observations. The assimilation results clearly demonstrate that increasing the observational constraint from individual to combined channel measurements and from less to more frequent observation times systematically improves the assimilation results. The experiments with the model error indicate that the current specification of this error in the form of a generic linear forcing, which was adopted from other data assimilation studies, is not suitable for the cloud-resolving data assimilation. Instead, a parameter estimation approach may need to be explored in the future. The experiments with varying decorrelation lengths suggest the need to use the model horizontal grid spacing that is several times smaller than the GOES imager native resolution to achieve equivalent spatial variability in the assimilation.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2006-07-13
    Description: The operation of a number of non-contiguous parcels of land as a single farming unit is known as land fragmentation. It is a widespread and persistent phenomenon and, at the same time, widely criticized by development agencies. Available evidence clearly suggests that the unqualified faith in the merit of consolidation is not justified; fragmentation may have some rationale. This paper substantiates the latter position with a case study of an irrigated agricultural system. Thereafter, it locates fragmentation within the broader context and analyses its role within a hierarchy of phenomena in the linked social and ecological local system. For this analysis an evolutionary game model is used. It is shown that fragmentation increases the resilience of the system of cooperation. The study concludes by suggesting an appropriate strategy for resilience management.
    Print ISSN: 1355-770X
    Electronic ISSN: 1469-4395
    Topics: Economics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-12-01
    Description: This study aims to find the optimal switching point for the Indian coal-based power plants to switch to a cost-effective technology and reduce particulate emissions. Regulation in the form of an emission standard, an emissions tax, an ash tax, or a coal tax provides an incentive for the power plants to abate. We have taken a period of 40 years to show the pattern of abatement in a sample of 40 power plants. Linear programming using GAMS has been used for the analysis to determine when the plants will shift to cost-efficient technology. We have first done the analysis on a firm-to-firm basis and then we have aggregated to show the variability of our results.
    Print ISSN: 1355-770X
    Electronic ISSN: 1469-4395
    Topics: Economics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-05-01
    Description: Variability of the wind field over the equatorial Indian Ocean is spread throughout the intraseasonal (10–60 day) band. In contrast, variability of the near-surface υ field in the eastern, equatorial ocean is concentrated at biweekly frequencies and is largely composed of Yanai waves. The excitation of this biweekly variability is investigated using an oceanic GCM and both analytic and numerical versions of a linear, continuously stratified (LCS) model in which solutions are represented as expansions in baroclinic modes. Solutions are forced by Quick Scatterometer (QuikSCAT) winds (the model control runs) and by idealized winds having the form of a propagating wave with frequency σ and wavenumber kw. The GCM and LCS control runs are remarkably similar in the biweekly band, indicating that the dynamics of biweekly variability are fundamentally linear and wind driven. The biweekly response is composed of local (nonradiating) and remote (Yanai wave) parts, with the former spread roughly uniformly along the equator and the latter strengthening to the east. Test runs to the numerical models separately forced by the τx and τy components of the QuikSCAT winds demonstrate that both forcings contribute to the biweekly signal, the response forced by τy being somewhat stronger. Without mixing, the analytic spectrum for Yanai waves forced by idealized winds has a narrowband (resonant) response for each baroclinic mode: Spectral peaks occur whenever the wavenumber of the Yanai wave for mode n is sufficiently close to kw and they shift from biweekly to lower frequencies with increasing modenumber n. With mixing, the higher-order modes are damped so that the largest ocean response is restricted to Yanai waves in the biweekly band. Thus, in the LCS model, resonance and mixing act together to account for the ocean's favoring the biweekly band. Because of the GCM's complexity, it cannot be confirmed that vertical mixing also damps its higher-order modes; other possible processes are nonlinear interactions with near-surface currents, and the model's low vertical resolution below the thermocline. Test runs to the LCS model show that Yanai waves from several modes superpose to form a beam (wave packet) that carries energy downward as well as eastward. Reflections of such beams from the near-surface pycnocline and bottom act to maintain near-surface energy levels, accounting for the eastward intensification of the near-surface, equatorial υ field in the control runs.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-05-01
    Print ISSN: 1070-485X
    Electronic ISSN: 1938-3789
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...