ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2021-01-05
    Description: Destructive earthquakes are rare in France yet pose a sizable seismic hazard, especially when critical infrastructures are concerned. Only a few destructive events have occurred within the instrumental period, the most important being the 11 June 1909, Lambesc (Provence) earthquake. With a magnitude estimated at 6.2 [Rothé, 1942], the event was recorded by 30 observatories and produced intensity IX effects in the epicentral area, ~30 km north of Marseille. We collected 30 seismograms, leveling data and earthquake intensities to assess the magnitude and possibly the focal mechanism of this event. Following this multidisciplinary approach, we propose a source model where all relevant parameters are constrained by at least two of the input datasets. Our reappraisal of the seismological data yielded Mw 5.8-6.1 (6.0 preferred) and Ms 6.0, consistent with the magnitude from intensity data (Me 5.8) and with constraints derived from modeling of coseismic elevation changes. Hence, we found the Lambesc earthquake to have been somewhat smaller than previously reported. Our datasets also constrain the geometry and kinematics of faulting, suggesting that the earthquake was generated by reverse-right lateral slip on a WNW-striking, steeply north-dipping fault beneath the western part of the Trévaresse fold. This result suggests that the fold, located in front of the Lubéron thrust, plays a significant role in the region’s recent tectonic evolution. The sense of slip obtained for the 1909 rupture also agrees with the regional stress field obtained from earthquake focal mechanisms and microtectonic data as well as recent GPS data.
    Description: Published
    Description: 2454
    Description: partially_open
    Keywords: Lambesc earthquake ; France ; historical seismograms ; displacement modeling ; macroseismic data ; geodetic data ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2978 bytes
    Format: 4419432 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We relocate the 1990–1991 Potenza (Southern Apennines belt, Italy) sequences and calculate focal mechanisms. This seismicity clusters along an E–W, dextral strike–slip structure. Secondorder clusters are also present and reflect the activation of minor shears. The depth distribution of earthquakes evidences a peak between 14 and 20 km, within the basement of the subducting Apulian plate. The analysed seismicity does not mirror that of Southern Apennines, which include NW–SE striking normal faults and earthquakes concentrated within the first 15 km of the crust. We suggest that the E–W faults affecting the foreland region of Apennine propagate up to 25 km of depth. The Potenza earthquakes reflect the reactivation of a deep, preexisting fault system. We conclude that the seismotectonic setting of Apennines is characterized by NW–SE normal faults affecting the upper 15 km of the crust, and by E– W deeper strike–slip faults cutting the crystalline basement of the chain.
    Description: Published
    Description: 586-590
    Description: N/A or not JCR
    Description: reserved
    Keywords: Southern Apennines ; seismicity ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 377117 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We analysed elevation changes induced by the 1997–1998 Umbria-Marche, central Apennines (Italy) earthquakes. We employed data from a first-order geodetic levelling line measured in 1951, 1992 and 1998. The line bears a record of pre-seismic and coseismic strains associated with the causative fault of the 1997 September 26, 09:40 mainshock (Mw = 6.0). A first level analysis performed under the assumption of slip homogeneity of coseismic slip shows misfits that cannot be reduced simply by altering the fault size and geometry. A more detailed analysis based on a distribution of coseismic slip obtained from broad-band seismograms provides a better fit and is in agreement with 1951–1992 elevation changes interpreted as precursory slip by previous investigators. The levelling data sets new constraints on the location, extent, dip and depth of the fault, in full agreement with seismological evidence and images from SAR interferometry. The data show no evidence for slip in the uppermost 3 km of the crust, suggesting that a major and widely recognized normal fault that exists in the area is no longer active and showing a tendency of present tectonic strains to revert the current topographic setting.
    Description: Published
    Description: 819-829
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: earthquakes ; fault slip ; geodesy ; normal faulting ; Umbria-Marche ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We analyse seismograms of the slump episodes at Stromboli on December 30, 2002. Using a simple single force model, we estimate the volume involved in the individual subevents and attempt a chronological reconstruction of the whole process. Our results indicate the occurrence of two main events that could be interpreted as a submarine slump, which caused the observed tsunami, and a subaerial slump, which did not produce destructive sea waves. A total volume of about 20 106 m3 results for the submarine event, which developed over about 2 minutes with several distinct detachments, the first and largest displacing a volume of 10.8 106 m3. The second, subaerial, slump involved at least 2.5 106 m3, in about 90 s. A large long period pulse is also recognizable in the seismograms of the Stromboli station. We tentatively interpret this feature as tilt caused by the water load associated with the inundation in the Ficogrande area, on the northeastern side of the island.
    Description: Published
    Description: (L02605)
    Description: reserved
    Keywords: Stromboli Volcano ; seismological description ; Fractures and faults ; Structural Geology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1913603 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-24
    Description: Regular surveys with a PM695 FLIR thermal imaging camera from both the ground and from helicopter were conducted on Stromboli from October 2001. These measurements allow us to (i) examine changes in morphology of the summit craters produced by paroxystic explosions and (ii) track the increasing level of magma within the conduits of Stromboli that preceded and led to the 2002/03 effusive eruption. Two geophysical surveys in May and September/October 2002 demonstrated a clear increasing trend in the amplitude of VLP events, consistent with the presence of a higher magma column above the VLP source region. The observed increase in magma level was probably induced by an increase in the pressure of the magma feeding system at Stromboli, controlled by regional tectonic stress. The increased magma level induced strain on the uppermost part of the crater terrace, allowing an increase in soil permeability and therefore CO2 and Radon degassing. Eventually this stress caused the northeast flank of the craters to fracture, allowing lava to flood out at high effusion rates on 28th December. Regular surveys with the thermal imaging camera, combined with geophysical monitoring, are an invaluable addition to the armory of volcanologists attempting to follow the evolution of activity on active volcanoes.
    Description: Published
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: open
    Keywords: Thermal imaging ; Stromboli ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...