ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • BioMed Central  (2)
  • American Association of Petroleum Geologists
  • 2005-2009  (2)
  • 1
    Publication Date: 2008-11-07
    Description: Background Most testicular germ cell tumors arise from intratubular germ cell neoplasia unclassified (IGCNU, also referred to as carcinoma in situ), which is thought to originate from a transformed primordial germ cell (PGC)/gonocyte, the fetal germ cell. Analyses of the molecular profile of IGCNU and seminoma show similarities to the expression profile of fetal germ cells/gonocytes. In murine PGCs, expression and interaction of Blimp1 and Prmt5 results in arginine 3 dimethylation of histone H2A and H4. This imposes epigenetic modifications leading to transcriptional repression in mouse PGCs enabling them to escape the somatic differentiation program during migration, while expressing markers of pluripotency. Results In the present study, we show that BLIMP1 and PRMT5 were expressed and arginine dimethylation of histones H2A and H4 was detected in human male gonocytes at weeks 12–19 of gestation, indicating a role of this mechanism in human fetal germ cell development as well. Moreover, BLIMP1/PRMT5 and histone H2A and H4 arginine 3 dimethylation was present in IGCNU and most seminomas, while downregulated in embryonal carcinoma (EC) and other nonseminomatous tumors. Conclusion These data reveal similarities in marker expression and histone modification between murine and human PGCs. Moreover, we speculate that the histone H2A and H4 arginine 3 dimethylation might be the mechanism by which IGCNU and seminoma maintain the undifferentiated state while loss of these histone modifications leads to somatic differentiation observed in nonseminomatous tumors.
    Electronic ISSN: 1471-213X
    Topics: Biology , Medicine
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-10-21
    Description: Background Secreted phosphoprotein 1 (SPP1 or Osteopontin, OPN) is a multifunctional matricellular glycoprotein involved in development and regeneration of skeletal muscle. Previously, we have demonstrated that porcine SPP1 shows breed-related differential mRNA expression during myogenesis. With the aim to identify putative contributing cis-regulatory DNA variation we resequenced the 5' upstream region of the gene in the respective breeds Pietrain and Duroc. We found two single nucleotide polymorphisms (SNP; [GenBank:M84121]: g.1804C〉T and g.3836A〉G). We focused our investigation on the SNP g.3836A〉G, because in silico analysis and knowledge about the regulation of SPP1 suggested an effect of this SNP on a CCAAT/enhancer binding protein beta (C/EBPβ) responsive transcriptional enhancer. Results Using electrophoretic mobility shift assay we demonstrated that, similar to human SPP1, the 3' terminal end of the first intron of porcine SPP1 harbors a C/EBPβ binding site and showed that this binding site is negatively affected by the mutant G allele. Genotyping of 48 fetuses per breed revealed that the G allele segregated exclusively in Duroc fetuses with a frequency of 57 percent. Using real-time quantitative PCR we showed that, consistent with its negative effect on a transcriptional enhancer element, the G allele tends to decrease mRNA abundance of SPP1 in the fetal musculus longissimus dorsi (~1.3 fold; P ≥ 0.1). Moreover, we showed that the SNP g.3836A〉G leads to ubiquitous aberrant splicing of the first intron by generating a de novo and activating a cryptic splice acceptor site. Aberrantly spliced transcripts comprise about half of the SPP1 messages expressed by the G allele. Both aberrant splice variants differ from the native transcript by insertions in the leader sequences which do not change the reading frame of SPP1. Conclusion At the 3' terminal end of the first intron of the porcine SPP1 we identified a unique, dually functional SNP g.3836A〉G. This SNP affects the function of the SPP1 gene at the DNA level by affecting a C/EBPβ binding site and at the RNA level by activating aberrant splicing of the first intron, and thus represents an interesting DNA-marker to study phenotypic effects of SPP1 DNA-variation.
    Electronic ISSN: 1471-2199
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...