ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: In the Apennines subduction (Italy), earthquakes mainly occur within overriding plate, along the chain axis. The events concentrate in the upper 15 km of the crust above the mantle wedge and focal solutions indicate normal faulting. In the foreland, the seismogenic volume affects the upper 35 km of the crust. Focal solutions indicate prevailing reverse faulting in the northern foreland and strike-slip faulting in the southern one. The deepening of the seismogenic volume from the chain axis to the foreland follows the deepening of the Moho and isotherms. The seismicity above the mantle wedge is associated with uplift of the chain axial zone, volcanism, high CO2 flux, and extension. The upward pushing of the asthenospheric mantle and the mantle-derived, CO2-rich fluids trapped within the crust below the chain axis causes this seismicity. All these features indicate that the axial zone of Apennines is affected by early rifting processes. In northern Italy, the widespread and deeper seismicity in the foreland reflects active accretion processes. In the southern foreland, the observed dextral strike-slip faulting and the lack of reverse focal solutions suggest that accretion processes are not active at present. In our interpretation of the Apennines subduction, the shallower seismicity of the overriding plate is due to the dynamics (uprising and eastward migration) of the asthenospheric wedge.
    Description: Published
    Description: Q02013
    Description: JCR Journal
    Description: open
    Keywords: Apenninnes ; crustal seismicity ; rifting ; subduction ; fluids ; geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2459547 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We modeled Pnl phases from several moderate magnitude earthquakes in the eastern Mediterranean to test methods and develop path calibrations for determining source parameters. The study region, which extends from the eastern part of the Hellenic arc to the eastern Anatolian fault, is dominated by moderate earthquakes that can produce significant damage. Our results are useful for analyzing regional seismicity as well as seismic hazard, because very few broadband seismic stations are available in the selected area. For the whole region we have obtained a single velocity model characterized by a 30 km thick crust, low upper mantle velocities and a very thin lid overlaying a distinct low velocity layer. Our preferred model proved quite reliable for determining focal mechanism and seismic moment across the entire range of selected paths. The source depth is also well constrained, especially for moderate earthquakes.
    Description: Published
    Description: N/A or not JCR
    Description: reserved
    Keywords: Body wave propagation ; earthquake parameters ; lithosphere ; upper-mantle ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 690519 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-03
    Description: The Southern Apennines chain is related to the west-dipping subduction of the Apulian lithosphere. The strongest seismic events mostly occurred in correspondence of the chain axis along normal NW–SE striking faults parallel to the chain axis. These structures are related to mantle wedge upwelling beneath the chain. In the foreland, faulting develops along E–W strike-slip to oblique-slip faults related to the roll-back of the foreland. Similarly to other historical events in Southern Apennines, the I0 = XI (MCS intensity scale) 23 July 1930 earthquake occurred between the chain axis and the thrust front without surface faulting. This event produced more than 1400 casualties and extensive damage elongated approximately E-W. The analysis of the historical waveforms provides the chance to study the fault geometry of this ‘‘anomalous’’ event and allow us to clarify its geodynamic significance. Our results indicate that the MS = 6.6 1930 event nucleated at 14.6 ± 3.06 km depth and ruptured a north dipping, N100 E striking plane with an oblique motion. The fault propagated along the fault strike 32 km to the east at about 2 km/s. The eastern fault tip is located in proximity of the Vulture volcano. The 1930 hypocenter, similarly to the 1990 (MW = 5.8) Southern Apennines event, is within the Mesozoic carbonates of the Apulian foredeep and the rupture developed along a ‘‘blind’’ fault. The 1930 fault kinematics significantly differs from that typical of large Southern Apennines earthquakes, which occur in a distinct seismotectonic domain on late Pleistocene to Holocene outcropping faults. These results stress the role played by pre-existing, ‘‘blind’’ faults in the Apennines subduction setting
    Description: Published
    Description: B05303
    Description: 3.2. Tettonica attiva
    Description: 3.10. Sismologia storica e archeosismologia
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: reserved
    Keywords: southern apennines ; historical earthquakes ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The use of modern broadband seismometers allows the observation of dynamic and static near-field effects. In the fortunate case of the great 1994 Bolivia earthquake a 6 mm coseismic permanent offset was observed at distances of about 600 km. On the other hand no surface static displacement from moderate events has been observed yet. This is mainly due to the intrinsic difficulties in the instrument removal. In the present paper we analyze broadband waveforms from a couple of events in southern Italy, recorded at distance of 50 km, by applying the technique for instrument removal recently introduced by Zhu [2003]. We derive stable and reliable measures of very small coseismic static offset produced by moderate magnitude earthquakes. Our results, successfully tested against synthetic prediction, give permanent displacement of a few tenths of millimeters, one order of magnitude smaller than usual geodetic resolution.
    Description: Published
    Description: N/A or not JCR
    Description: reserved
    Keywords: near-field source ; static displacement ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 305188 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...