ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-08-22
    Description: We have compared 14 different sediment incubation chambers, most of them were used on bottom landers. Measurements of mixing time, pressure gradients at the bottom and Diffusive Boundary Layer thickness (DBL) were used to describe the hydrodynamic properties of the chambers and sediment–water solute fluxes of silicate (34 replicates) and oxygen (23 replicates) during three subsequently repeated incubation experiments on a homogenized, macrofauna-free sediment. The silicate fluxes ranged from 0.24 to 1.01 mmol m−2 day−1 and the oxygen fluxes from 9.3 to 22.6 mmol m−2 day−1. There was no statistically significant correlation between measured fluxes and the chamber design or between measured fluxes and hydrodynamic settings suggesting that type of chamber was not important in these flux measurements. For verification of sediment homogeneity, 61 samples of meiofauna were taken and identified to major taxa. In addition, 13 sediment cores were collected, sectioned into 5–10-mm slices and separated into pore water and solid phase. The pore water profiles of dissolved silicate were used to calculate diffusive fluxes of silicate. These fluxes ranged from 0.63 to 0.87 mmol m−2 day−1. All of the collected sediment parameters indicated that the sediment homogenization process had been satisfactorily accomplished. Hydrodynamic variations inside and between chambers are a reflection of the chamber design and the stirring device. In general, pump stirrers with diffusers give a more even distribution of bottom currents and DBL thicknesses than paddle wheel-type stirrers. Most chambers display no or low static differential pressures when the water is mixed at rates of normal use. Consequently, there is a low risk of creating stirrer induced pressure effects on the measured fluxes. Centrally placed stirrers are preferable to off-center placed stirrers which are more difficult to map and do not seem to give any hydrodynamic advantages. A vertically rotating stirrer gives about five times lower static differential pressures at the same stirring speed as the same stirrer mounted horizontally. If the aim is to simulate or mimic resuspension at high flow velocities, it cannot be satisfactorily done in a chamber using a horizontal (standing) rotating impeller (as is the case for most chambers in use) due to the creation of unnatural conditions, i.e. large static differential pressures and pre-mature resuspension at certain locations in the chamber.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Absolute abundances (concentrations) of dinoflagellate cysts are often determined through the addition of Lycopodium clavatum marker-grains as a spike to a sample before palynological processing. An interlaboratory calibration exercise was set up in order to test the comparability of results obtained in different laboratories, each using its own preparation method. Each of the 23 laboratories received the same amount of homogenized splits of four Quaternary sediment samples. The samples originate from different localities and consisted of a variety of lithologies. Dinoflagellate cysts were extracted and counted, and relative and absolute abundances were calculated. The relative abundances proved to be fairly reproducible, notwithstanding a need for taxonomic calibration. By contrast, excessive loss of Lycopodium spores during sample preparation resulted in non-reproducibility of absolute abundances. Use of oxidation, KOH, warm acids, acetolysis, mesh sizes larger than 15 μm and long ultrasonication (N1 min) must be avoided to determine reproducible absolute abundances. The results of this work therefore indicate that the dinoflagellate cyst worker should make a choice between using the proposed standard method which circumvents critical steps, adding Lycopodium tablets at the end of the preparation and using an alternative method.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: The skill of numerical Lagrangian drifter trajectories in three numerical models is assessed by comparing these numerically obtained paths to the trajectories of drifting buoys in the real ocean. The skill assessment is performed using the two-sample Kolmogorov-Smirnov statistical test. To demonstrate the assessment procedure, it is applied to three different models of the Agulhas region. The test can either be performed using crossing positions of one-dimensional sections in order to test model performance in specific locations, or using the total two-dimensional data set of trajectories. The test yields four quantities: a binary decision of model skill, a confidence level which can be used as a measure of goodness-of-fit of the model, a test statistic which can be used to determine the sensitivity of the confidence level, and cumulative distribution functions that aid in the qualitative analysis. The ordering of models by their confidence levels is the same as the ordering based on the qualitative analysis, which suggests that the method is suited for model validation. Only one of the three models, a 1/10 degree two-way nested regional ocean model, might have skill in the Agulhas region. The other two models, a 1/2 degree global model and a 1/8 degree assimilative model, might have skill only on some sections in the region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-10-05
    Description: Centropages typicus is one of the most common, abundant and best studied calanoid copepods in neritic waters of the Mediterranean Sea, which means it can provide useful information about the long-term dynamics of the Mediterranean epipelagic ecosystem. This paper presents the first comparative overview of the seasonal and long-term variability of C. typicus in different Mediterranean regions. This review is based on quantitative information from the published literature and novel data from five ongoing zooplankton time-series carried out in the Mallorca Island (Balearic Sea), the Bay of Villefranche (Ligurian Sea), the Gulf of Naples (Tyrrhenian Sea), the Gulf of Trieste (North Adriatic Sea), and the Saronikos Gulf (Aegean Sea). In most Mediterranean regions, C. typicus has a perennial occurrence, with peaks of abundance that reflect the succession of different generations. Throughout the Mediterranean, the annual cycle of C. typicus is characterized by minima in winter and major peaks in April–June, which is earlier than those observed in European Atlantic waters, where the peaks are more frequently recorded in summer and fall. In the regions investigated, the annual cycle shows remarkable similarities in terms of timing, but notable differences in the peak height; populations are far more abundant in coastal north-western regions and less abundant in the eastern basin. In the long-term, changes in C. typicus phenology observed in the Bay of Villefranche and in the Gulf of Naples are related to the North Atlantic Oscillation (NAO) index. In these two regions, the species responds to climate forcing similarly in terms of average seasonal patterns (bi-modal patterns in years of positive NAO, unimodal patterns in years of negative NAO) but oppositely in terms of quantity, indicating different influence of the NAO on the two regions. At decadal scales, C. typicus populations show high interannual variability with marked geographical differences. In some areas, the patterns are clearly characterized by alternate phases of higher and lower annual abundances, at higher frequency (mainly 1–2 years) in the Gulf of Naples, and lower frequency in the Saronikos Gulf (mainly 4–5 years) and in the Gulf of Trieste (mainly 5–6 years). Synchronous phases of increasing or decreasing abundance are discernable only for a few sites and short periods, for example from 1998 to 2000 in the Gulf of Naples, Gulf of Trieste and Saronikos Gulf. The regional differences observed in the long-term patterns of C. typicus populations suggest that the temporal dynamics of this species are significantly more affected by local conditions than by any possible common driving force acting at basin scale through teleconnections.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-11-01
    Description: The main Marmara Fault exhibits numerous sites of fluid venting, observed during previous cruises and in particular with R.O.V. VICTOR during the MARMARASCARPS cruise (2002). Long CALYPSO cores were recovered near active vents and at reference sites during the MARMARA-VT cruise (2004), together with echosounder sub-bottom profiles (frequency of 3.5kHz). We compiled R.O.V. video observations from MARMARASCARPS cruise and show that all known seeps occur in relationship with strike-slip faults, providing pathways for fluid migration. Among the main active sites, a distinction is made between gas seeps and water seeps. At gas seeps, bubble emissions at the seafloor or disturbed echofacies on sounder profiles demonstrate the presence of free methane gas at a shallow depth within the sediment. Most cores displayed gas-related expansion, most intense for cores taken within the gas plumes. On the other hand. authigenic carbonate chimneys characterize the water seeps and visible water outflow was observed at two sites (in the Tekirdag and Central basins). The pore fluid chemistry data show that the water expelled at these sites is brackish water trapped in the sediment during lacustrine times (before 14 cal kyr BP), in relation with the paleoceanography in the Sea of Marmara. The chimney site in the Tekirdag Basin is located at the outlet of a canyon feeding a buried fan with coarse sandy turbidites. Pore fluid composition profiles indicate that the sand layers channel the brackish fluids laterally from the basin into the fault zone at less than 20 m depth. However, a deeper gas source cannot be excluded. (c) 2008 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  Geochimica et Cosmochimica Acta, 73 (13). A285-A285.
    Publication Date: 2012-07-05
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-12-03
    Description: The relation between acoustic sea-floor backscatter and seep distribution is examined by integrating multibeam backscatter data and seep locations detected by single-beam echosounder. This study is further supported by side-scan sonar recordings, high-resolution 5 kHz seismic data, pore-water analysis, grain-size analysis and visual sea-floor observations. The datasets were acquired during the 2003 and 2004 expeditions of the EC-funded CRIMEA project in the Dnepr paleo-delta area, northwestern Black Sea. More than 600 active methane seeps were hydroacoustically detected within a small (3.96 km by 3.72 km) area on the continental shelf of the Dnepr paleo-delta in water depths ranging from − 72 m to − 156 m. Multibeam and side-scan sonar recordings show backscatter patterns that are clearly associated with seepage or with a present dune area. Seeps generally occur within medium- to high-backscatter areas which often coincide with pockmarks. High-resolution seismic data reveals the presence of an undulating gas front, i.e. the top of the free gas in the subsurface, which domes up towards and intersects the sea floor at locations where gas seeps and medium- to high-backscatter values are detected. Pore-water analysis of 4 multi-cores, taken at different backscatter intensity sites, shows a clear correlation between backscatter intensity and dissolved methane fluxes. All analyzed chemical species indicate increasing anaerobic oxidation of methane (AOM) from medium- to high-backscatter locations. This is confirmed by visual sea-floor observations, showing bacterial mats and authigenic carbonates formed by AOM. Grain-size analysis of the 4 multi-cores only reveals negligible variations between the different backscatter sites. Integration of all datasets leads to the conclusion that the observed backscatter patterns are the result of ongoing methane seepage and the precipitation of methane-derived authigenic carbonates (MDACs) caused by AOM. The carbonate formation also appears to lead to a gradual (self)-sealing of the seeps by cementing fluid pathways/horizons followed by a relocation of the bubble-releasing locations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-01-30
    Description: Global Nd–Hf isotope systematics can be mainly described with two linear arrays, the global silicate Earth array (“the terrestrial array”) and the global ferromanganese crust and nodule array (”the seawater array”). The offset between these two arrays provides evidence for the sources and mechanisms by which these elements are added to ocean water. However, the reason for this offset is under debate, with the two preferred hypotheses being (i) incongruent release of Hf during continental weathering and (ii) hydrothermal contribution of Hf to the seawater budget. Here we present new Nd and Hf isotope data on glacio-marine core-top sediments from around the perimeter of the Antarctic continent. The results range from εHf = − 30.0 to εHf = + 3.9 and εNd = − 21.3 to εNd = + 0.9, reflecting the large range of basement ages and lithologies around the Antarctic continent. In Nd–Hf isotope space, they confirm the systematic correlations found in rocks from other parts around the world and provide valuable insights into the previously underrepresented group of sediments with very old provenance. In this paper we revisit the cause for the offset of the seawater array from the terrestrial array using simple mass balance considerations. We use these calculations to test to what degree the seawater array could be a product of preferential weathering of “non-zircon portions” of the upper continental crust, implying retention of zircons in the solid residue of weathering. Lutetium–Hf and Sm–Nd evolution and mixing calculations show that the global seawater array can be generated with continental sources only. On the other hand, a predominantly hydrothermal origin of Hf in the ocean is not possible because the seawater Hf isotopic composition is significantly less radiogenic than hydrothermal sources, and requires a minimum fraction of 50% continental Hf. While hydrothermal sources may contribute some Hf to seawater, continental contributions are required to balance the budget.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: The submerged section of the North Anatolian fault within the Marmara Sea was investigated using acoustic techniques and submersible dives. Most gas emissions in the water column were found near the surface expression of known active faults. Gas emissions are unevenly distributed. The linear fault segment crossing the Central High and forming a seismic gap – as it has not ruptured since 1766, based on historical seismicity, exhibits relatively less gas emissions than the adjacent segments. In the eastern Sea of Marmara, active gas emissions are also found above a buried transtensional fault zone, which displayed micro-seismic activity after the 1999 events. Remarkably, this zone of gas emission extends westward all along the southern edge of Cinarcik basin, well beyond the zone where 1999 aftershocks were observed. The long term monitoring of gas seeps could hence be highly valuable for the understanding of the evolution of the fluid-fault coupling processes during the earthquake cycle within the Marmara Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-10-05
    Description: We review current knowledge and understanding of the biology and ecology of the calanoid copepod Calanus helgolandicus in European waters, as well as provide a collaborative synthesis of data from 18 laboratories and 26 sampling stations in areas distributed from the northern North Sea to the Aegean and Levantine Seas. This network of zooplankton time-series stations has enabled us to collect and synthesise seasonal and multi-annual data on abundance, body size, fecundity, hatching success and vertical distribution of C. helgolandicus. An aim was to enable comparison with its congener Calanus finmarchicus, which has been studied intensively as a key component of European and north east Atlantic marine ecosystems. C. finmarchicus is known to over-winter at depth, whereas the life-cycle of C. helgolandicus is less well understood. Overwintering populations of C. helgolandicus have been observed off the Atlantic coast between 400 and 800 m, while in the Mediterranean there is evidence of significant deep-water populations at depths as great as 4200 m. The biogeographical distribution of C. helgolandicus in European coastal waters covers a wide range of habitats, from open ocean to coastal environments, and its contribution to mesozooplankton biomass ranges from 6% to 93%. Highest abundances were recorded in the Adriatic and off the west coast of Spain. C. helgolandicus is generally found in 9–20 °C water, with maximum abundances from 13–17 °C. In contrast, C. finmarchicus is found in cooler water between 0 and 15 °C, with peak abundances from 0 to 9 °C. As water has warmed in the North Atlantic over recent decades, the range of C. helgolandicus and its abundance on the fringes of its expanding range have increased. This review will facilitate development of population models of C. helgolandicus. This will not only help answer remaining questions but will improve our ability to forecast future changes, in response to a warming climate, in the abundance and distribution of this important species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...