ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Crystallography, X-Ray  (3)
  • Nature Publishing Group (NPG)  (3)
  • American Geophysical Union (AGU)
  • American Institute of Physics
  • 2005-2009  (3)
  • 1955-1959
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2008-01-04
    Description: Typical 2-Cys peroxiredoxins (Prxs) have an important role in regulating hydrogen peroxide-mediated cell signalling. In this process, Prxs can become inactivated through the hyperoxidation of an active site Cys residue to Cys sulphinic acid. The unique repair of this moiety by sulphiredoxin (Srx) restores peroxidase activity and terminates the signal. The hyperoxidized form of Prx exists as a stable decameric structure with each active site buried. Therefore, it is unclear how Srx can access the sulphinic acid moiety. Here we present the 2.6 A crystal structure of the human Srx-PrxI complex. This complex reveals the complete unfolding of the carboxy terminus of Prx, and its unexpected packing onto the backside of Srx away from the Srx active site. Binding studies and activity analyses of site-directed mutants at this interface show that the interaction is required for repair to occur. Moreover, rearrangements in the Prx active site lead to a juxtaposition of the Prx Gly-Gly-Leu-Gly and Srx ATP-binding motifs, providing a structural basis for the first step of the catalytic mechanism. The results also suggest that the observed interactions may represent a common mode for other proteins to bind to Prxs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646140/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646140/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jonsson, Thomas J -- Johnson, Lynnette C -- Lowther, W Todd -- R01 GM072866/GM/NIGMS NIH HHS/ -- R01 GM072866-03/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Jan 3;451(7174):98-101. doi: 10.1038/nature06415.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Structural Biology and Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18172504" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites/genetics ; Catalysis ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Multiprotein Complexes/chemistry/genetics/metabolism ; Mutagenesis, Site-Directed ; Oxidation-Reduction ; Oxidoreductases/*chemistry/genetics/*metabolism ; Oxidoreductases Acting on Sulfur Group Donors ; Peroxiredoxins/*chemistry/genetics/*metabolism ; Protein Structure, Quaternary ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-06-12
    Description: Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine residues. Synthetic phosphinothricin (glufosinate) is a component of two top-selling herbicides (Basta and Liberty), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during phosphinothricin tripeptide biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP). Here we report the in vitro reconstitution of this unprecedented C(sp(3))-C(sp(3)) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-haem iron(ii)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalysed by the 2-His-1-carboxylate mononuclear non-haem iron family of enzymes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874955/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874955/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cicchillo, Robert M -- Zhang, Houjin -- Blodgett, Joshua A V -- Whitteck, John T -- Li, Gongyong -- Nair, Satish K -- van der Donk, Wilfred A -- Metcalf, William W -- P01 GM077596/GM/NIGMS NIH HHS/ -- P01 GM077596-03/GM/NIGMS NIH HHS/ -- R01 GM059334/GM/NIGMS NIH HHS/ -- R01 GM059334-09/GM/NIGMS NIH HHS/ -- R01 GM59334/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Jun 11;459(7248):871-4. doi: 10.1038/nature07972.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19516340" target="_blank"〉PubMed〈/a〉
    Keywords: Aminobutyrates/*chemistry/*metabolism ; Biocatalysis ; Crystallography, X-Ray ; Dioxygenases/chemistry/genetics/*metabolism ; Escherichia coli ; Formates/metabolism ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Models, Biological ; Models, Molecular ; Molecular Conformation ; Organophosphonates/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-09-26
    Description: The extent to which evolution is reversible has long fascinated biologists. Most previous work on the reversibility of morphological and life-history evolution has been indecisive, because of uncertainty and bias in the methods used to infer ancestral states for such characters. Further, despite theoretical work on the factors that could contribute to irreversibility, there is little empirical evidence on its causes, because sufficient understanding of the mechanistic basis for the evolution of new or ancestral phenotypes is seldom available. By studying the reversibility of evolutionary changes in protein structure and function, these limitations can be overcome. Here we show, using the evolution of hormone specificity in the vertebrate glucocorticoid receptor as a case-study, that the evolutionary path by which this protein acquired its new function soon became inaccessible to reverse exploration. Using ancestral gene reconstruction, protein engineering and X-ray crystallography, we demonstrate that five subsequent 'restrictive' mutations, which optimized the new specificity of the glucocorticoid receptor, also destabilized elements of the protein structure that were required to support the ancestral conformation. Unless these ratchet-like epistatic substitutions are restored to their ancestral states, reversing the key function-switching mutations yields a non-functional protein. Reversing the restrictive substitutions first, however, does nothing to enhance the ancestral function. Our findings indicate that even if selection for the ancestral function were imposed, direct reversal would be extremely unlikely, suggesting an important role for historical contingency in protein evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bridgham, Jamie T -- Ortlund, Eric A -- Thornton, Joseph W -- F32-GM074398/GM/NIGMS NIH HHS/ -- R01 GM081592/GM/NIGMS NIH HHS/ -- R01-GM081592/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Sep 24;461(7263):515-9. doi: 10.1038/nature08249.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon 97403, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19779450" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Cricetinae ; Cricetulus ; Crystallography, X-Ray ; Epistasis, Genetic ; *Evolution, Molecular ; Hormones/metabolism ; *Models, Biological ; Models, Molecular ; Mutation/genetics ; Protein Engineering ; Receptors, Glucocorticoid/*chemistry/*genetics/metabolism ; Sequence Alignment ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...